mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Somehow, feed-non-ranking training data usually have this type of column. Add option to support it. Reviewed By: xianjiec, kennyhorror Differential Revision: D4773960 fbshipit-source-id: 5a7ef4618a070e04f3cd8ddfcbf2b7441c00d92d
216 lines
7.4 KiB
Python
216 lines
7.4 KiB
Python
## @package layers
|
|
# Module caffe2.python.layers.layers
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import schema, scope
|
|
from caffe2.python.layers.tags import TagContext
|
|
|
|
from collections import namedtuple
|
|
import numpy as np
|
|
|
|
# Some types to simplify descriptions of things traveling between ops
|
|
IdList = schema.List(np.int64)
|
|
IdScoreList = schema.Map(np.int64, np.float32)
|
|
|
|
|
|
def get_categorical_limit(record):
|
|
if schema.equal_schemas(record, IdList):
|
|
key = 'items'
|
|
elif schema.equal_schemas(record, IdScoreList):
|
|
key = 'keys'
|
|
else:
|
|
raise NotImplementedError()
|
|
assert record[key].metadata is not None, (
|
|
"Blob {} doesn't have metadata".format(str(record[key]())))
|
|
return record[key].metadata.categorical_limit
|
|
|
|
|
|
class InstantiationContext(object):
|
|
"""
|
|
List of contexts where layer could be instantitated
|
|
"""
|
|
EVAL = 'eval'
|
|
TRAINING = 'training'
|
|
PREDICTION = 'prediction'
|
|
|
|
|
|
_LAYER_REGISTRY = {}
|
|
|
|
|
|
def register_layer(name, layer):
|
|
assert name not in _LAYER_REGISTRY, "{0} already exists".format(name)
|
|
_LAYER_REGISTRY[name] = layer
|
|
|
|
|
|
def layer_exists(name):
|
|
return name in _LAYER_REGISTRY
|
|
|
|
|
|
def get_layer_class(name):
|
|
return _LAYER_REGISTRY[name]
|
|
|
|
|
|
def create_layer(layer_name, *args, **kwargs):
|
|
return _LAYER_REGISTRY[layer_name](*args, **kwargs)
|
|
|
|
|
|
LayerPsParam = namedtuple('LayerPsParam', ['sparse_key', 'average_length'])
|
|
|
|
|
|
# TODO(amalevich): Modify this to some better struct, something closer to
|
|
# ParameterInfo.
|
|
LayerParameter = namedtuple(
|
|
'LayerParameter',
|
|
['parameter', 'optimizer', 'initializer', 'ps_param'])
|
|
LayerParameter.__new__.__defaults__ = (None, None, None, None)
|
|
|
|
|
|
def _is_request_only_scalar(scalar):
|
|
if len(scalar.field_metadata()) == 0:
|
|
return False
|
|
for metadata in scalar.field_metadata():
|
|
if not (metadata and metadata.feature_specs and getattr(
|
|
metadata.feature_specs, 'feature_is_request_only', False)):
|
|
return False
|
|
return True
|
|
|
|
|
|
class ModelLayer(object):
|
|
|
|
def __init__(self, model, prefix, input_record,
|
|
predict_input_record_fields=None, tags=None, **kwargs):
|
|
"""
|
|
Base class for model layers. Layer is an abstraction that allows to
|
|
provide model description in terms of meta-operators, where each of the
|
|
meta-operators can have different implementations for training,
|
|
evaluation and prediction, that are instantiated later. As an example
|
|
SampledSoftmax can do something related to sampling depending on
|
|
supervision during the training and just apply softmax if it's used for
|
|
prediction/evaluation.
|
|
|
|
All inputs/outputs from layers are represented as a record (instance of
|
|
schema bounded to blobs) and are accessible through input_record and
|
|
output_schema. If Layer needs to have only a subset of inputs/provides
|
|
subset of outputs during the inference - it should provide
|
|
predict_input_record and predict_output_schema correspondingly (those
|
|
records are expected to be a subset of input_record/output_schema).
|
|
|
|
Each layer is also have list of Tags associated with it, that depends on
|
|
current context and arguments. It's possible to use those tags during
|
|
the instantiation time.
|
|
|
|
"""
|
|
self.name = model.next_layer_name(prefix)
|
|
self.model = model
|
|
self.kwargs = kwargs
|
|
self._input_record = input_record
|
|
if predict_input_record_fields:
|
|
if not isinstance(predict_input_record_fields, list):
|
|
predict_input_record_fields = [predict_input_record_fields]
|
|
self._predict_input_record = self._input_record[
|
|
predict_input_record_fields]
|
|
else:
|
|
self._predict_input_record = None
|
|
|
|
self.request_only = True
|
|
if len(input_record.all_scalars()) == 0:
|
|
self.request_only = False
|
|
for scalar in input_record.all_scalars():
|
|
if not _is_request_only_scalar(scalar):
|
|
self.request_only = False
|
|
break
|
|
|
|
self._output_schema = None
|
|
self._predict_output_schema = None
|
|
self.eval_output_schema = None
|
|
self.tags = set(tags or [])
|
|
self.tags.update(TagContext.current().tags)
|
|
self.params = []
|
|
|
|
def get_type(self):
|
|
return self.__class__.__name__
|
|
|
|
def _check_output_schema(self):
|
|
assert self._output_schema is not None, "Schema is not initialized"
|
|
assert (self._predict_output_schema is None or
|
|
schema.is_schema_subset(self._predict_output_schema,
|
|
self._output_schema)), (
|
|
"predict_output_schema is not a subset of the output_schema")
|
|
|
|
@property
|
|
def predict_input_record(self):
|
|
return self._predict_input_record or self._input_record
|
|
|
|
@property
|
|
def input_record(self):
|
|
return self._input_record
|
|
|
|
@property
|
|
def predict_output_schema(self):
|
|
self._check_output_schema()
|
|
return self._predict_output_schema or self._output_schema
|
|
|
|
@predict_output_schema.setter
|
|
def predict_output_schema(self, output_schema):
|
|
assert self._predict_output_schema is None
|
|
self._predict_output_schema = output_schema
|
|
|
|
@property
|
|
def output_schema(self):
|
|
self._check_output_schema()
|
|
return self._output_schema
|
|
|
|
@output_schema.setter
|
|
def output_schema(self, output_schema):
|
|
assert self._output_schema is None
|
|
self._output_schema = output_schema
|
|
|
|
def get_parameters(self):
|
|
return self.params
|
|
|
|
def get_fp16_compatible_parameters(self):
|
|
"""Return a subset of parameters which can be converted to fp16"""
|
|
return []
|
|
|
|
def get_memory_usage(self):
|
|
return 0
|
|
|
|
def add_operators(self, net, init_net=None,
|
|
context=InstantiationContext.TRAINING):
|
|
# Namescope below should warranty that all intermediate blobs will be
|
|
# assiciated with the layer that produces them
|
|
with scope.NameScope(self.name):
|
|
if context not in {InstantiationContext.PREDICTION,
|
|
InstantiationContext.EVAL}:
|
|
assert init_net, (
|
|
"Only prediction and eval context don't need init_net")
|
|
if init_net:
|
|
for param in self.params:
|
|
# TODO(amalevich): Either return back to lambdas, that add
|
|
# all params (looks a bit safer and breaking less
|
|
# abstractions) or extend Net interface to this type of
|
|
# operations better
|
|
init_net._net.op.extend([param.initializer])
|
|
if context == InstantiationContext.TRAINING:
|
|
self.add_train_ops(net)
|
|
elif context == InstantiationContext.EVAL:
|
|
self.add_eval_ops(net)
|
|
else:
|
|
self.add_ops(net)
|
|
|
|
def add_ops(self, net):
|
|
raise NotImplementedError
|
|
|
|
def add_eval_ops(self, net):
|
|
# Default train layer implementation is completely matching predict
|
|
# layer implementation.
|
|
self.add_ops(net)
|
|
|
|
def add_train_ops(self, net):
|
|
# Default eval layer implementation is completely matching eval
|
|
# layer implementation.
|
|
self.add_eval_ops(net)
|