pytorch/torch/csrc/jit/script/builtin_functions.cpp
Michael Suo 3b2844eeea Make CompilationUnit own Functions (#22202)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22202
ghimport-source-id: de6c963af1df76d2d6357155e64a5913ab879f76

Test Plan: Imported from OSS

Differential Revision: D15998761

Pulled By: suo

fbshipit-source-id: 5414a6424953738d823b265d20dc67dde6e5b2d8
2019-07-04 17:12:00 -07:00

115 lines
3.5 KiB
C++

#include <torch/csrc/api/include/torch/jit.h>
#include <torch/csrc/jit/code_template.h>
#include <torch/csrc/jit/script/builtin_functions.h>
#include <torch/csrc/jit/script/resolver.h>
namespace torch {
namespace jit {
namespace script {
auto scalar_operators_source = CodeTemplate(
R"SCRIPT(
def mul(a : ${Scalar}, b : Tensor) -> Tensor:
return b * a
def add(a : ${Scalar}, b : Tensor) -> Tensor:
return b + a
def ne(a : ${Scalar}, b : Tensor) -> Tensor:
return b != a
def eq(a : ${Scalar}, b : Tensor) -> Tensor:
return b == a
def lt(a : ${Scalar}, b : Tensor) -> Tensor:
return b > a
def le(a : ${Scalar}, b : Tensor) -> Tensor:
return b >= a
def gt(a : ${Scalar}, b : Tensor) -> Tensor:
return b < a
def ge(a : ${Scalar}, b : Tensor) -> Tensor:
return b <= a
def sub(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.neg(b) + a
def div(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.reciprocal(b) * a
)SCRIPT");
auto _ntuple_ops = CodeTemplate(
R"SCRIPT(
def _${name}(x: BroadcastingList${Length}[${Scalar}]) -> List[${Scalar}]:
return x
)SCRIPT");
struct BuiltinFunctionRegistry {
const std::vector<Function*>& getAllBuiltinFunctionsFor(
Symbol name) {
const static std::vector<Function*> empty;
// when initializing the builtin function library, we will re-enter
// getAllBuiltinFunctionsFor since it is called in the compiler to
// lookup builtins and initializing the builtin functions calls the
// compiler. To avoid deadlocking, we use a recursive mutex (same thread can
// re-lock, the mutex without waiting), and report no loaded builtins during
// init.
std::lock_guard<std::recursive_mutex> guard(mutex);
if (state == INTIIALIZING) {
return empty;
} else if (state == UNINITIALIZED) {
state = INTIIALIZING;
loadBuiltinFunctions();
state = INITIALIZED;
}
AT_ASSERT(state == INITIALIZED);
auto it = builtins_by_name_.find(name);
if (it == builtins_by_name_.end())
return empty;
return it->second;
}
private:
void loadSource(const std::string& source) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
modules.emplace_back(cu);
cu->define(source, script::nativeResolver(), /*self=*/nullptr);
for (auto& method : cu->get_functions()) {
builtins_by_name_[Symbol::fromQualString("aten::" + method->name())]
.push_back(method);
}
}
void loadBuiltinFunctions() {
for (auto scalar : {"float", "int"}) {
TemplateEnv env;
env.s("Scalar", scalar);
loadSource(scalar_operators_source.format(env));
}
using str_pair = std::pair<std::string, std::string>;
const std::vector<str_pair> name_len = {
str_pair("single", "1"),
str_pair("pair", "2"),
str_pair("triple", "3"),
str_pair("quadruple", "4"),
};
for (auto scalar : {"float", "int"}) {
for (auto pair : name_len) {
TemplateEnv env;
env.s("Scalar", scalar);
env.s("name", pair.first);
env.s("Length", pair.second);
loadSource(_ntuple_ops.format(env));
}
}
}
enum { UNINITIALIZED, INTIIALIZING, INITIALIZED } state = UNINITIALIZED;
std::recursive_mutex mutex;
std::vector<std::shared_ptr<CompilationUnit>> modules;
std::unordered_map<Symbol, std::vector<Function*>>
builtins_by_name_;
};
const std::vector<Function*>& getAllBuiltinFunctionsFor(
Symbol name) {
static BuiltinFunctionRegistry registry;
return registry.getAllBuiltinFunctionsFor(name);
}
} // namespace script
} // namespace jit
} // namespace torch