pytorch/test/cpp/api
Peter Goldsborough 3ae721d350 Set and get default dtype (#13748)
Summary:
Replaces the `DefaultTensorOptions` with just a global default dtype that you can set and get like in Python.

Also, calls `set_default_dtype` in the implementation of `torch.set_default_dtype`. Right now these two default values are separate but will always be the same. Should we just bind `set_default_dtype`  into Python? I think that might be good to do in a separate PR though.

ezyang gchanan

Also CC colesbury who wanted to do this for ATen for a while? What do you think about it?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13748

Differential Revision: D13340207

Pulled By: goldsborough

fbshipit-source-id: 2689b09eb137fabb3a92d1ad1635782bee9398e8
2018-12-05 10:28:41 -08:00
..
any.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
CMakeLists.txt Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
dataloader.cpp Jaliyae/samplers (#13870) 2018-11-29 07:07:19 -08:00
expanding-array.cpp Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
integration.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
jit.cpp Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
module.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
modules.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
ordered_dict.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
parallel.cpp Remove OptionsGuard from ATen (#14524) 2018-11-30 13:30:35 -08:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Use MNIST dataset in C++ integration test (#13737) 2018-11-09 09:55:02 -08:00
sequential.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
serialize.cpp Restore device in cpp API (#14711) 2018-12-04 00:46:41 -08:00
static.cpp Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
support.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
tensor_cuda.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
tensor_options_cuda.cpp Back out "Fix include paths for TensorOptions, DefaultTensorOptions, OptionsGuard" (#14744) 2018-12-04 08:59:07 -08:00
tensor_options.cpp Set and get default dtype (#13748) 2018-12-05 10:28:41 -08:00
tensor.cpp Rename _local_scalar to item() (#13676) 2018-12-04 13:19:26 -08:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.