pytorch/torch/ao/quantization/qconfig_mapping.py
Xia, Weiwen 3a3e2002d8 [Quant] Add unified x86 quant backend (#84329)
## Description

Implement unified quantization backend 'X86' for x86 platforms. It combines the advantages of FBGEMM and ONEDNN. It selects kernels during weight prepacking and hide the details from end users. It will be the default backend in place of FBGEMM.

For details, please refer to this RFC: [[RFC] Unified quantization backend for x86 CPU platforms](https://github.com/pytorch/pytorch/issues/83888)

## Validation
**Correctness**
Covered by UT

**Accuracy**
By running torchvision models on imagenet, no accuracy difference is found between FBGEMM and the unified X86 backend:
[torchvision_accuracy_comparison_fbgemm_vs_x86.xlsx](https://github.com/pytorch/pytorch/files/9598114/torchvision_accuracy_comparison_fbgemm_vs_x86.xlsx)

**Performance**
Depends on https://github.com/pytorch/pytorch/pull/84470 which improves performance.
For early PoC results, please refer to https://github.com/pytorch/pytorch/files/9399202/unified_qengine_poc_performance_bechmark.xlsx

With the two PRs combined, we collected some data on Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
Method: Run multi-instances with 4 cores per instance on whole socket. Using JeMalloc and Intel OMP.
Models/throughput | fbgemm | x86 | improvement
-- | -- | -- | --
wide_resnet101_2 | 173.5675 | 241.815 | 39.32%
resnext101_32x8d | 174.365 | 339.8175 | 94.89%
resnet50 | 573.155 | 1174.14 | 104.86%
vgg19_bn | 260.335 | 337.92 | 29.80%
vgg19 | 257.935 | 333.265 | 29.21%
inception_v3 | 601.1175 | 1309.33 | 117.82%
densenet161 | 296.645 | 435.5625 | 46.83%
mnasnet1_0 | 1216.7 | 4057.515 | 233.49%
squeezenet1_0 | 1220.085 | 5153.3875 | 322.38%
alexnet | 2294.91 | 2624.6375 | 14.37%
fbnetc_100 | 976.2825 | 3110.1825 | 218.57%
shufflenet_v2_x0_5 | 1555.76 | 3026.125 | 94.51%
spnasnet_100 | 1059.065 | 3502.0975 | 230.68%
pytorch-unet | 192.76 | 246.77 | 28.02%
acgan | 257.32 | 333.7325 | 29.70%
cgan | 7790.6925 | 7803.1025 | 0.16%
sgan | 257.565 | 338.8875 | 31.57%
se_resnet50 | 492.3725 | 916.5175 | 86.14%
vggm | 300.2875 | 316.2075 | 5.30%

Environment:
- PyTorch version: 1.13.0a0+gitcdd625b
- Is debug build: False
- CUDA used to build PyTorch: None
- ROCM used to build PyTorch: N/A
- OS: Ubuntu 20.04.3 LTS (x86_64)
- GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
- Clang version: Could not collect
- CMake version: version 3.22.5
- Libc version: glibc-2.31
- Python version: 3.9.12 (main, Jun  1 2022, 11:38:51)  [GCC 7.5.0] (64-bit runtime)
- Python platform: Linux-5.11.0-27-generic-x86_64-with-glibc2.31
- Is CUDA available: False
- CUDA runtime version: No CUDA
- GPU models and configuration: No CUDA
- Nvidia driver version: No CUDA
- cuDNN version: No CUDA
- HIP runtime version: N/A
- MIOpen runtime version: N/A
- Is XNNPACK available: True

Versions of relevant libraries:
- [pip3] intel-extension-for-pytorch==1.13.0+cpu
- [pip3] numpy==1.23.3
- [pip3] pytorch-widedeep==0.3.7
- [pip3] torch==1.13.0a0+git48b423b
- [pip3] torchvision==0.14.0a0+ebb68f3
- [conda] blas                      1.0                         mkl
- [conda] intel-extension-for-pytorch 1.13.0+cpu               pypi_0    pypi
- [conda] mkl                       2021.4.0           h06a4308_640
- [conda] mkl-include               2022.1.0                 pypi_0    pypi
- [conda] mkl-service               2.4.0            py39h7f8727e_0
- [conda] mkl-static                2022.1.0                 pypi_0    pypi
- [conda] mkl_fft                   1.3.1            py39hd3c417c_0
- [conda] mkl_random                1.2.2            py39h51133e4_0
- [conda] numpy                     1.23.3                   pypi_0    pypi
- [conda] numpy-base                1.22.3           py39hf524024_0
- [conda] torch                     1.13.0a0+git48b423b          pypi_0    pypi
- [conda] torchvision               0.14.0a0+ebb68f3          pypi_0    pypi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84329
Approved by: https://github.com/jerryzh168
2022-09-29 00:44:40 +00:00

304 lines
12 KiB
Python

from __future__ import annotations
from collections import OrderedDict
from typing import Any, Callable, Dict, Tuple, Union
import torch
from .fake_quantize import (
default_weight_fake_quant,
FixedQParamsFakeQuantize,
)
from .observer import (
_PartialWrapper,
default_fixed_qparams_range_0to1_observer,
default_fixed_qparams_range_neg1to1_observer,
default_placeholder_observer,
default_weight_observer,
)
from .qconfig import (
default_reuse_input_qconfig,
get_default_qconfig,
get_default_qat_qconfig,
QConfig,
QConfigAny
)
__all__ = [
"get_default_qconfig_mapping",
"get_default_qat_qconfig_mapping",
"QConfigMapping",
]
# TODO: replace all usages with these constants
GLOBAL_DICT_KEY = ""
OBJECT_TYPE_DICT_KEY = "object_type"
MODULE_NAME_REGEX_DICT_KEY = "module_name_regex"
MODULE_NAME_DICT_KEY = "module_name"
MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY = "module_name_object_type_order"
_FIXED_QPARAMS_OP_TO_OBSERVER: Dict[Union[Callable, str], _PartialWrapper] = {
torch.nn.Hardsigmoid: default_fixed_qparams_range_0to1_observer,
torch.nn.functional.hardsigmoid: default_fixed_qparams_range_0to1_observer,
"hardsigmoid": default_fixed_qparams_range_0to1_observer,
"hardsigmoid_": default_fixed_qparams_range_0to1_observer,
torch.nn.Sigmoid: default_fixed_qparams_range_0to1_observer,
torch.sigmoid: default_fixed_qparams_range_0to1_observer,
"sigmoid": default_fixed_qparams_range_0to1_observer,
"sigmoid_": default_fixed_qparams_range_0to1_observer,
torch.nn.Softmax: default_fixed_qparams_range_0to1_observer,
torch.nn.Tanh: default_fixed_qparams_range_neg1to1_observer,
torch.tanh: default_fixed_qparams_range_neg1to1_observer,
"tanh": default_fixed_qparams_range_neg1to1_observer,
"tanh_": default_fixed_qparams_range_neg1to1_observer,
}
def _get_default_qconfig_mapping(is_qat: bool, backend: str, version: int) -> QConfigMapping:
"""
Return the default QConfigMapping for the given quantization type and backend.
"""
if is_qat:
qconfig = get_default_qat_qconfig(backend, version)
else:
qconfig = get_default_qconfig(backend, version)
default_weight = default_weight_fake_quant if is_qat else default_weight_observer
# default_per_channel_weight_observer is not currently compatible with fbgemm backend
# so we have to modify the weight observer to default_weight_observer or another
# per tensor supported observer.
# see https://github.com/pytorch/pytorch/issues/47535
if backend in ("fbgemm", "x86"):
qconfig_transpose = QConfig(activation=qconfig.activation, weight=default_weight)
else:
qconfig_transpose = qconfig
# currently layernorm only supports float weights
# we have to add this because otherwise there will be a extra quantize-dequantize pair
qconfig_layernorm = QConfig(activation=qconfig.activation, weight=default_placeholder_observer)
qconfig_mapping = QConfigMapping() \
.set_global(qconfig) \
.set_object_type("reshape", default_reuse_input_qconfig) \
.set_object_type(torch.nn.Conv1d, qconfig) \
.set_object_type(torch.nn.Conv2d, qconfig) \
.set_object_type(torch.nn.Conv3d, qconfig) \
.set_object_type(torch.nn.ConvTranspose1d, qconfig_transpose) \
.set_object_type(torch.nn.ConvTranspose2d, qconfig_transpose) \
.set_object_type(torch.nn.ConvTranspose3d, qconfig_transpose) \
.set_object_type(torch.nn.Linear, qconfig) \
.set_object_type(torch.nn.functional.conv1d, qconfig) \
.set_object_type(torch.nn.functional.conv2d, qconfig) \
.set_object_type(torch.nn.functional.conv3d, qconfig) \
.set_object_type(torch.nn.functional.conv_transpose1d, qconfig_transpose) \
.set_object_type(torch.nn.functional.conv_transpose2d, qconfig_transpose) \
.set_object_type(torch.nn.functional.conv_transpose3d, qconfig_transpose) \
.set_object_type(torch.nn.functional.linear, qconfig) \
.set_object_type(torch.nn.ReLU, qconfig) \
.set_object_type(torch.nn.functional.relu, qconfig) \
.set_object_type(torch.relu, qconfig) \
.set_object_type(torch.nn.BatchNorm1d, qconfig) \
.set_object_type(torch.nn.BatchNorm2d, qconfig) \
.set_object_type(torch.nn.BatchNorm3d, qconfig) \
.set_object_type(torch.nn.functional.layer_norm, qconfig_layernorm) \
.set_object_type(torch.nn.LayerNorm, qconfig_layernorm) \
# Use special observers for ops with fixed qparams
fixed_qparams_observer_to_qconfig: Dict[Any, QConfigAny] = {}
for fixed_qparams_op, observer in _FIXED_QPARAMS_OP_TO_OBSERVER.items():
if observer in fixed_qparams_observer_to_qconfig:
fixed_qparams_qconfig = fixed_qparams_observer_to_qconfig[observer]
else:
if is_qat:
activation = FixedQParamsFakeQuantize.with_args(observer=observer)
else:
activation = observer
fixed_qparams_qconfig = QConfig(activation=activation, weight=default_weight)
fixed_qparams_observer_to_qconfig[observer] = fixed_qparams_qconfig
qconfig_mapping.set_object_type(fixed_qparams_op, fixed_qparams_qconfig)
return qconfig_mapping
def get_default_qconfig_mapping(backend="fbgemm", version=0) -> QConfigMapping:
"""
Return the default QConfigMapping for post training quantization.
Args:
* ``backend`` : the quantization backend for the default qconfig mapping, should be
one of ["fbgemm", "qnnpack"]
* ``version`` : the version for the default qconfig mapping
"""
# TODO: add assert for backend choices
return _get_default_qconfig_mapping(False, backend, version)
def get_default_qat_qconfig_mapping(backend="fbgemm", version=1) -> QConfigMapping:
"""
Return the default QConfigMapping for quantization aware training.
Args:
* ``backend`` : the quantization backend for the default qconfig mapping, should be
one of ["fbgemm", "qnnpack"]
* ``version`` : the version for the default qconfig mapping
"""
return _get_default_qconfig_mapping(True, backend, version)
class QConfigMapping:
"""
Mapping from model ops to :class:`torch.ao.quantization.QConfig` s.
The user can specify QConfigs using the following methods (in increasing match priority):
``set_global`` : sets the global (default) QConfig
``set_object_type`` : sets the QConfig for a given module type, function, or method name
``set_module_name_regex`` : sets the QConfig for modules matching the given regex string
``set_module_name`` : sets the QConfig for modules matching the given module name
``set_module_name_object_type_order`` : sets the QConfig for modules matching a combination
of the given module name, object type, and the index at which the module appears
Example usage::
qconfig_mapping = QConfigMapping()
.set_global(global_qconfig)
.set_object_type(torch.nn.Linear, qconfig1)
.set_object_type(torch.nn.ReLU, qconfig1)
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
.set_module_name_regex("foo.*", qconfig2)
.set_module_name("module1", qconfig1)
.set_module_name("module2", qconfig2)
.set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3)
"""
def __init__(self):
# In increasing match priority:
self.global_qconfig: QConfigAny = None
self.object_type_qconfigs: OrderedDict[Union[Callable, str], QConfigAny] = OrderedDict()
self.module_name_regex_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
self.module_name_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
self.module_name_object_type_order_qconfigs: OrderedDict[Tuple[str, Callable, int], QConfigAny] =\
OrderedDict()
def set_global(self, global_qconfig: QConfigAny) -> QConfigMapping:
"""
Set the global (default) QConfig.
"""
self.global_qconfig = global_qconfig
return self
def set_object_type(self, object_type: Union[Callable, str], qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for a given module type, function, or method name.
If the QConfig for an existing object type was already set, the new QConfig will override the old one.
"""
self.object_type_qconfigs[object_type] = qconfig
return self
def set_module_name_regex(self, module_name_regex: str, qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching the given regex string.
Regexes will be matched in the order in which they are registered through this method.
Thus, the caller should register more specific patterns first, e.g.::
qconfig_mapping = QConfigMapping()
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
.set_module_name_regex("foo.*bar.*", qconfig2)
.set_module_name_regex("foo.*", qconfig3)
In this example, "foo.bar.conv0" would match qconfig1, "foo.bar.linear" would match qconfig2,
and "foo.baz.relu" would match qconfig3.
If the QConfig for an existing module name regex was already set, the new QConfig will override the
old one while preserving the order in which the regexes were originally registered.
"""
self.module_name_regex_qconfigs[module_name_regex] = qconfig
return self
def set_module_name(self, module_name: str, qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching the given module name.
If the QConfig for an existing module name was already set, the new QConfig will override the old one.
"""
self.module_name_qconfigs[module_name] = qconfig
return self
def set_module_name_object_type_order(
self,
module_name: str,
object_type: Callable,
index: int,
qconfig: QConfigAny) -> QConfigMapping:
"""
Set the QConfig for modules matching a combination of the given module name, object type,
and the index at which the module appears.
If the QConfig for an existing (module name, object type, index) was already set, the new QConfig
will override the old one.
"""
self.module_name_object_type_order_qconfigs[(module_name, object_type, index)] = qconfig
return self
# TODO: remove this
def to_dict(self) -> Dict[str, Any]:
"""
Convert this ``QConfigMapping`` to a dictionary with the following keys:
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
"module_name_object_type_order"
The values of this dictionary are lists of tuples.
"""
return {
GLOBAL_DICT_KEY: self.global_qconfig,
OBJECT_TYPE_DICT_KEY: list(self.object_type_qconfigs.items()),
MODULE_NAME_REGEX_DICT_KEY: list(self.module_name_regex_qconfigs.items()),
MODULE_NAME_DICT_KEY: list(self.module_name_qconfigs.items()),
MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY: [
(*k, v) for k, v in self.module_name_object_type_order_qconfigs.items()
],
}
# TODO: remove this
@classmethod
def from_dict(cls, qconfig_dict: Dict[str, Any]) -> QConfigMapping:
"""
Create a ``QConfigMapping`` from a dictionary with the following keys (all optional):
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
"module_name_object_type_order"
The values of this dictionary are expected to be lists of tuples.
"""
conf = cls()
if GLOBAL_DICT_KEY in qconfig_dict:
conf.set_global(qconfig_dict[GLOBAL_DICT_KEY])
for object_type, qconfig in qconfig_dict.get(OBJECT_TYPE_DICT_KEY, []):
conf.set_object_type(object_type, qconfig)
for module_name_regex, qconfig in qconfig_dict.get(MODULE_NAME_REGEX_DICT_KEY, []):
conf.set_module_name_regex(module_name_regex, qconfig)
for module_name, qconfig in qconfig_dict.get(MODULE_NAME_DICT_KEY, []):
conf.set_module_name(module_name, qconfig)
for module_name, object_type, index, qconfig in qconfig_dict.get(MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY, []):
conf.set_module_name_object_type_order(module_name, object_type, index, qconfig)
return conf