mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Adds mixed precision autocasting support between fp32/fp16 to torchscript/JIT. More in depth descriptoin can be found at [torch/csrc/jit/JIT-AUTOCAST.md](https://github.com/pytorch/pytorch/pull/63939/files#diff-1f1772aaa508841c5bb58b74ab98f49a1e577612cd9ea5c386c8714a75db830b) This PR implemented an autocast optimization pass that inserts casting ops per AMP rule (torch/csrc/jit/passes/autocast.cpp), that mimics the behavior of eager autocast. The pass also takes into consideration the context of `torch.cuda.amp.autocast` and only inserts casting ops within the enabled context manager, giving feature parity as with eager amp autocast. We currently provide JIT AMP autocast as a prototyping feature, so it is default off and could be turned on via `torch._C._jit_set_autocast_mode(True)` The JIT support for autocast is subject to different constraints compared to the eager mode implementation (mostly related to the fact that TorchScript is statically typed), restriction on the user facing python code is described in doc torch/csrc/jit/JIT-AUTOCAST.md This is a prototype, there are also implementation limitation that's necessary to keep this PR small and get something functioning quickly on upstream, so we can iterate on designs. Few limitation/challenge that is not properly resolved in this PR: 1. Autocast inserts cast operation, which would have impact on scalar type of output tensor feeding downstream operations. We are not currently propagating the updated scalar types, this would give issues/wrong results on operations in promotion rules. 2. Backward for autodiff in JIT misses the casting of dgrad to input scalar type, as what autograd does in eager. This forces us to explicitly mark the casting operation for certain operations (e.g. binary ops), otherwise, we might be feeding dgrad with mismatch scalar type to input. This could potentially break gradient function consuming dgrad. (e.g. gemm backwards, which assumes grad_output to be of same scalar type as input') 3. `torch.autocast` api has an optional argument `dtype` which is not currently supported in the JIT autocast and we require a static value. Credit goes mostly to: tlemo kevinstephano Pull Request resolved: https://github.com/pytorch/pytorch/pull/63939 Reviewed By: navahgar Differential Revision: D31093381 Pulled By: eellison fbshipit-source-id: da6e26c668c38b01e296f304507048d6c1794314
223 lines
10 KiB
Python
223 lines
10 KiB
Python
import torch
|
|
import functools
|
|
import warnings
|
|
|
|
from typing import Any, Optional
|
|
from .types import _dtype
|
|
|
|
def autocast_decorator(autocast_instance, func):
|
|
@functools.wraps(func)
|
|
def decorate_autocast(*args, **kwargs):
|
|
with autocast_instance:
|
|
return func(*args, **kwargs)
|
|
decorate_autocast.__script_unsupported = '@autocast() decorator is not supported in script mode' # type: ignore[attr-defined]
|
|
return decorate_autocast
|
|
|
|
class autocast(object):
|
|
r"""
|
|
Instances of :class:`autocast` serve as context managers or decorators that
|
|
allow regions of your script to run in mixed precision.
|
|
|
|
In these regions, ops run in an op-specific dtype chosen by autocast
|
|
to improve performance while maintaining accuracy.
|
|
See the :ref:`Autocast Op Reference<autocast-op-reference>` for details.
|
|
|
|
When entering an autocast-enabled region, Tensors may be any type.
|
|
You should not call ``half()`` or ``bfloat16()`` on your model(s) or inputs when using autocasting.
|
|
|
|
:class:`autocast` should wrap only the forward pass(es) of your network, including the loss
|
|
computation(s). Backward passes under autocast are not recommended.
|
|
Backward ops run in the same type that autocast used for corresponding forward ops.
|
|
|
|
Example for CUDA Devices::
|
|
|
|
# Creates model and optimizer in default precision
|
|
model = Net().cuda()
|
|
optimizer = optim.SGD(model.parameters(), ...)
|
|
|
|
for input, target in data:
|
|
optimizer.zero_grad()
|
|
|
|
# Enables autocasting for the forward pass (model + loss)
|
|
with autocast():
|
|
output = model(input)
|
|
loss = loss_fn(output, target)
|
|
|
|
# Exits the context manager before backward()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
See the :ref:`Automatic Mixed Precision examples<amp-examples>` for usage (along with gradient scaling)
|
|
in more complex scenarios (e.g., gradient penalty, multiple models/losses, custom autograd functions).
|
|
|
|
:class:`autocast` can also be used as a decorator, e.g., on the ``forward`` method of your model::
|
|
|
|
class AutocastModel(nn.Module):
|
|
...
|
|
@autocast()
|
|
def forward(self, input):
|
|
...
|
|
|
|
Floating-point Tensors produced in an autocast-enabled region may be ``float16``.
|
|
After returning to an autocast-disabled region, using them with floating-point
|
|
Tensors of different dtypes may cause type mismatch errors. If so, cast the Tensor(s)
|
|
produced in the autocast region back to ``float32`` (or other dtype if desired).
|
|
If a Tensor from the autocast region is already ``float32``, the cast is a no-op,
|
|
and incurs no additional overhead.
|
|
CUDA Example::
|
|
|
|
# Creates some tensors in default dtype (here assumed to be float32)
|
|
a_float32 = torch.rand((8, 8), device="cuda")
|
|
b_float32 = torch.rand((8, 8), device="cuda")
|
|
c_float32 = torch.rand((8, 8), device="cuda")
|
|
d_float32 = torch.rand((8, 8), device="cuda")
|
|
|
|
with autocast():
|
|
# torch.mm is on autocast's list of ops that should run in float16.
|
|
# Inputs are float32, but the op runs in float16 and produces float16 output.
|
|
# No manual casts are required.
|
|
e_float16 = torch.mm(a_float32, b_float32)
|
|
# Also handles mixed input types
|
|
f_float16 = torch.mm(d_float32, e_float16)
|
|
|
|
# After exiting autocast, calls f_float16.float() to use with d_float32
|
|
g_float32 = torch.mm(d_float32, f_float16.float())
|
|
|
|
CPU Example::
|
|
|
|
# Creates some tensors in default dtype (here assumed to be float32)
|
|
a_float32 = torch.rand((8, 8), device="cpu")
|
|
b_float32 = torch.rand((8, 8), device="cpu")
|
|
c_float32 = torch.rand((8, 8), device="cpu")
|
|
d_float32 = torch.rand((8, 8), device="cpu")
|
|
|
|
with autocast(dtype=torch.bfloat16, device_type="cpu"):
|
|
# torch.mm is on autocast's list of ops that should run in bfloat16.
|
|
# Inputs are float32, but the op runs in bfloat16 and produces bfloat16 output.
|
|
# No manual casts are required.
|
|
e_bfloat16 = torch.mm(a_float32, b_float32)
|
|
# Also handles mixed input types
|
|
f_bfloat16 = torch.mm(d_float32, e_bfloat16)
|
|
|
|
# After exiting autocast, calls f_float16.float() to use with d_float32
|
|
g_float32 = torch.mm(d_float32, f_bfloat16.float())
|
|
|
|
Type mismatch errors *in* an autocast-enabled region are a bug; if this is what you observe,
|
|
please file an issue.
|
|
|
|
``autocast(enabled=False)`` subregions can be nested in autocast-enabled regions.
|
|
Locally disabling autocast can be useful, for example, if you want to force a subregion
|
|
to run in a particular ``dtype``. Disabling autocast gives you explicit control over
|
|
the execution type. In the subregion, inputs from the surrounding region
|
|
should be cast to ``dtype`` before use::
|
|
|
|
# Creates some tensors in default dtype (here assumed to be float32)
|
|
a_float32 = torch.rand((8, 8), device="cuda")
|
|
b_float32 = torch.rand((8, 8), device="cuda")
|
|
c_float32 = torch.rand((8, 8), device="cuda")
|
|
d_float32 = torch.rand((8, 8), device="cuda")
|
|
|
|
with autocast():
|
|
e_float16 = torch.mm(a_float32, b_float32)
|
|
with autocast(enabled=False):
|
|
# Calls e_float16.float() to ensure float32 execution
|
|
# (necessary because e_float16 was created in an autocasted region)
|
|
f_float32 = torch.mm(c_float32, e_float16.float())
|
|
|
|
# No manual casts are required when re-entering the autocast-enabled region.
|
|
# torch.mm again runs in float16 and produces float16 output, regardless of input types.
|
|
g_float16 = torch.mm(d_float32, f_float32)
|
|
|
|
The autocast state is thread-local. If you want it enabled in a new thread, the context manager or decorator
|
|
must be invoked in that thread. This affects :class:`torch.nn.DataParallel` and
|
|
:class:`torch.nn.parallel.DistributedDataParallel` when used with more than one GPU per process
|
|
(see :ref:`Working with Multiple GPUs<amp-multigpu>`).
|
|
|
|
Args:
|
|
device_type(string, required): Whether to use 'cuda' or 'cpu' device
|
|
enabled(bool, optional, default=True): Whether autocasting should be enabled in the region.
|
|
dtype(torch_dtype, optional): Whether to use torch.float16 or torch.bfloat16.
|
|
cache_enabled(bool, optional, default=True): Whether the weight cache inside autocast should be enabled.
|
|
"""
|
|
def __init__(self, device_type : str,
|
|
dtype : Optional[_dtype] = None,
|
|
enabled : bool = True,
|
|
cache_enabled : Optional[bool] = None):
|
|
if torch._jit_internal.is_scripting():
|
|
self._enabled = enabled
|
|
self.device = device_type
|
|
self.fast_dtype = dtype
|
|
# TODO: support get_autocast_gpu/cpu_dtype
|
|
assert dtype is not None
|
|
return
|
|
self.device = device_type
|
|
if self.device == 'cuda':
|
|
self.fast_dtype = torch.get_autocast_gpu_dtype()
|
|
elif self.device == 'cpu':
|
|
self.fast_dtype = torch.get_autocast_cpu_dtype()
|
|
else:
|
|
raise RuntimeError('User specified autocast device_type must be \'cuda\' or \'cpu\'')
|
|
self._cache_enabled = torch.is_autocast_cache_enabled()
|
|
if torch.cuda.amp.common.amp_definitely_not_available() and self.device == 'cuda':
|
|
warnings.warn('User provided device_type of \'cuda\', but CUDA is not available. Disabling')
|
|
enabled = False
|
|
if dtype is not None:
|
|
self.fast_dtype = dtype
|
|
if cache_enabled is not None:
|
|
self._cache_enabled = cache_enabled
|
|
|
|
if self.device == 'cpu':
|
|
supported_dtype = [torch.bfloat16]
|
|
if self.fast_dtype not in supported_dtype:
|
|
error_message = 'In CPU autocast, but the target dtype is not supported. Disabling autocast.\n'
|
|
error_message += 'CPU Autocast only supports dtype of torch.bfloat16 currently.'
|
|
warnings.warn(error_message)
|
|
enabled = False
|
|
if self.device == 'cuda':
|
|
if self.fast_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
|
|
raise RuntimeError('Current CUDA Device does not support bfloat16. Please switch dtype to float16.')
|
|
self._enabled = enabled
|
|
|
|
def __enter__(self):
|
|
if torch._jit_internal.is_scripting():
|
|
assert self.fast_dtype is not None
|
|
return self
|
|
|
|
self.prev_cache_enabled = torch.is_autocast_cache_enabled()
|
|
if self.device == 'cpu':
|
|
self.prev = torch.is_autocast_cpu_enabled()
|
|
self.prev_fastdtype = torch.get_autocast_cpu_dtype()
|
|
torch.set_autocast_cpu_enabled(self._enabled)
|
|
torch.set_autocast_cpu_dtype(self.fast_dtype) # type: ignore[arg-type]
|
|
torch.autocast_increment_nesting()
|
|
else:
|
|
self.prev = torch.is_autocast_enabled()
|
|
self.prev_fastdtype = torch.get_autocast_gpu_dtype()
|
|
torch.set_autocast_gpu_dtype(self.fast_dtype) # type: ignore[arg-type]
|
|
torch.set_autocast_enabled(self._enabled)
|
|
torch.autocast_increment_nesting()
|
|
torch.set_autocast_cache_enabled(self._cache_enabled)
|
|
|
|
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): # type: ignore[override]
|
|
if torch._jit_internal.is_scripting():
|
|
return
|
|
|
|
# Drop the cache when we exit to a nesting level that's outside any instance of autocast.
|
|
if self.device == 'cpu':
|
|
if torch.autocast_decrement_nesting() == 0:
|
|
torch.clear_autocast_cache()
|
|
torch.set_autocast_cpu_enabled(self.prev)
|
|
torch.set_autocast_cpu_dtype(self.prev_fastdtype)
|
|
else:
|
|
if torch.autocast_decrement_nesting() == 0:
|
|
torch.clear_autocast_cache()
|
|
torch.set_autocast_enabled(self.prev)
|
|
torch.set_autocast_gpu_dtype(self.prev_fastdtype)
|
|
torch.set_autocast_cache_enabled(self.prev_cache_enabled)
|
|
return False
|
|
|
|
def __call__(self, func):
|
|
if torch._jit_internal.is_scripting():
|
|
return func
|
|
return autocast_decorator(self, func)
|