mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
## @package mobile_exporter
|
|
# Module caffe2.python.mobile_exporter
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, utils
|
|
from caffe2.proto import caffe2_pb2
|
|
import numpy as np
|
|
|
|
|
|
def add_tensor(net, name, blob):
|
|
''' Create an operator to store the tensor 'blob',
|
|
run the operator to put the blob to workspace.
|
|
uint8 is stored as an array of string with one element.
|
|
'''
|
|
kTypeNameMapper = {
|
|
np.dtype('float32'): "GivenTensorFill",
|
|
np.dtype('int32'): "GivenTensorIntFill",
|
|
np.dtype('int64'): "GivenTensorInt64Fill",
|
|
np.dtype('uint8'): "GivenTensorByteStringToUInt8Fill",
|
|
np.dtype('O'): "GivenTensorStringFill"
|
|
}
|
|
|
|
shape = blob.shape
|
|
values = blob
|
|
# pass array of uint8 as a string to save storage
|
|
# storing uint8_t has a large overhead for now
|
|
if blob.dtype == np.dtype('uint8'):
|
|
shape = blob.shape
|
|
values = [blob.tobytes()]
|
|
# Only allow string arrays as objects.
|
|
# The only intended use case for this is to store arrays of strings in the
|
|
# model which can be used for post processing results in subsequent ops.
|
|
if blob.dtype == np.dtype('O'):
|
|
for blob_val in blob:
|
|
assert(isinstance(blob_val, bytes))
|
|
|
|
op = core.CreateOperator(
|
|
kTypeNameMapper[blob.dtype],
|
|
[], [name],
|
|
arg=[
|
|
utils.MakeArgument("shape", shape),
|
|
utils.MakeArgument("values", values),
|
|
]
|
|
)
|
|
net.op.extend([op])
|
|
|
|
|
|
def Export(workspace, net, params):
|
|
"""Returns init_net and predict_net suitable for writing to disk
|
|
and loading into a Predictor"""
|
|
proto = net if isinstance(net, caffe2_pb2.NetDef) else net.Proto()
|
|
predict_net = caffe2_pb2.NetDef()
|
|
predict_net.CopyFrom(proto)
|
|
init_net = caffe2_pb2.NetDef()
|
|
# Populate the init_net.
|
|
ssa, blob_versions = core.get_ssa(net)
|
|
inputs = []
|
|
for versioned_inputs, _ in ssa:
|
|
inputs += [name for name, _ in versioned_inputs]
|
|
|
|
input_blobs = [blob_name for blob_name, version in
|
|
blob_versions.items()
|
|
if version == 0 and blob_name not in params]
|
|
# Blobs that are never used as an input to another layer,
|
|
# i.e. strictly output blobs.
|
|
output_blobs = [blob_name for blob_name, version in
|
|
blob_versions.items()
|
|
if version != 0 and blob_name not in inputs]
|
|
|
|
for blob_ref in params:
|
|
blob_name = str(blob_ref)
|
|
blob = workspace.FetchBlob(blob_name)
|
|
add_tensor(init_net, blob_name, blob)
|
|
# We have to make sure the blob exists in the namespace
|
|
# and we can do so with fake data. (Which is immediately overwritten
|
|
# by any typical usage)
|
|
for blob_name in input_blobs:
|
|
init_net.op.extend(
|
|
[
|
|
core.CreateOperator(
|
|
"GivenTensorFill", [], [blob_name],
|
|
arg=[
|
|
utils.MakeArgument("shape", [1, 1]),
|
|
utils.MakeArgument("values", [0.0])
|
|
]
|
|
)
|
|
]
|
|
)
|
|
|
|
# Now we make input/output_blobs line up with what Predictor expects.
|
|
del predict_net.external_input[:]
|
|
|
|
new_external_inputs = input_blobs
|
|
for external_input in proto.external_input:
|
|
if external_input not in new_external_inputs:
|
|
new_external_inputs.append(external_input)
|
|
|
|
# For populating weights
|
|
predict_net.external_input.extend(new_external_inputs)
|
|
# Ensure the output is also consistent with what we want
|
|
del predict_net.external_output[:]
|
|
predict_net.external_output.extend(output_blobs)
|
|
return init_net, predict_net
|