mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
## @package bucket_weighted
|
|
# Module caffe2.python.layers.bucket_weighted
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
import numpy as np
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
get_categorical_limit,
|
|
ModelLayer,
|
|
)
|
|
|
|
from caffe2.python.layers.tags import Tags
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BucketWeighted(ModelLayer):
|
|
def __init__(self, model, input_record, max_score=0, bucket_boundaries=None,
|
|
hash_buckets=True, weight_optim=None, name="bucket_weighted"):
|
|
super(BucketWeighted, self).__init__(model, name, input_record)
|
|
|
|
assert isinstance(input_record, schema.List), "Incorrect input type"
|
|
self.bucket_boundaries = bucket_boundaries
|
|
self.hash_buckets = hash_buckets
|
|
if bucket_boundaries is not None:
|
|
self.shape = len(bucket_boundaries) + 1
|
|
elif max_score > 0:
|
|
self.shape = max_score
|
|
else:
|
|
self.shape = get_categorical_limit(input_record)
|
|
|
|
self.bucket_w = self.create_param(param_name='bucket_w',
|
|
shape=[self.shape, ],
|
|
initializer=('ConstantFill', {'value': 1.0}),
|
|
optimizer=weight_optim)
|
|
|
|
self.output_schema = schema.Struct(
|
|
('bucket_weights',
|
|
schema.Scalar((np.float32, self.shape),
|
|
self.get_next_blob_reference("bucket_w_gather")))
|
|
)
|
|
|
|
self.tags.update({Tags.HANDLE_AS_SPARSE_LAYER})
|
|
|
|
def get_memory_usage(self):
|
|
return self.shape
|
|
|
|
def add_ops(self, net):
|
|
if self.bucket_boundaries is not None:
|
|
buckets_int = net.Bucketize(
|
|
self.input_record.values(),
|
|
"buckets_int",
|
|
boundaries=self.bucket_boundaries
|
|
)
|
|
else:
|
|
buckets = self.input_record.values()
|
|
buckets_int = net.Cast(
|
|
buckets,
|
|
"buckets_int",
|
|
to=core.DataType.INT32
|
|
)
|
|
if self.hash_buckets:
|
|
buckets_int = net.IndexHash(
|
|
buckets_int, "hashed_buckets_int", seed=0, modulo=self.shape
|
|
)
|
|
net.Gather(
|
|
[self.bucket_w, buckets_int],
|
|
self.output_schema.bucket_weights.field_blobs())
|