mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49980 From ``` ./python/libcst/libcst codemod remove_unused_imports.RemoveUnusedImportsWithGlean --no-format caffe2/ ``` Test Plan: Standard sandcastle tests Reviewed By: xush6528 Differential Revision: D25727359 fbshipit-source-id: c4f60005b10546423dc093d31d46deb418352286
134 lines
5.1 KiB
Python
134 lines
5.1 KiB
Python
|
|
|
|
|
|
|
|
|
|
from hypothesis import given, settings
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
import unittest
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class TestSpatialBN(hu.HypothesisTestCase):
|
|
@given(size=st.integers(7, 10),
|
|
input_channels=st.integers(7, 10),
|
|
batch_size=st.integers(1, 3),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
inplace=st.sampled_from([True, False]),
|
|
**mu.gcs)
|
|
@settings(deadline=1000)
|
|
def test_spatialbn_test_mode(
|
|
self, size, input_channels, batch_size, seed, order, epsilon,
|
|
inplace, gc, dc):
|
|
op = core.CreateOperator(
|
|
"SpatialBN",
|
|
["X", "scale", "bias", "mean", "var"],
|
|
["X" if inplace else "Y"],
|
|
order=order,
|
|
is_test=True,
|
|
epsilon=epsilon
|
|
)
|
|
|
|
def reference_spatialbn_test(X, scale, bias, mean, var):
|
|
if order == "NCHW":
|
|
scale = scale[np.newaxis, :, np.newaxis, np.newaxis]
|
|
bias = bias[np.newaxis, :, np.newaxis, np.newaxis]
|
|
mean = mean[np.newaxis, :, np.newaxis, np.newaxis]
|
|
var = var[np.newaxis, :, np.newaxis, np.newaxis]
|
|
return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,)
|
|
|
|
np.random.seed(1701)
|
|
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
|
|
mean = np.random.randn(input_channels).astype(np.float32)
|
|
var = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
|
|
if order == "NHWC":
|
|
X = X.swapaxes(1, 2).swapaxes(2, 3)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0])
|
|
|
|
@given(size=st.integers(7, 10),
|
|
input_channels=st.integers(7, 10),
|
|
batch_size=st.integers(1, 3),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW"]),
|
|
epsilon=st.floats(1e-5, 1e-2),
|
|
inplace=st.sampled_from([True, False]),
|
|
**mu.gcs)
|
|
def test_spatialbn_train_mode(
|
|
self, size, input_channels, batch_size, seed, order, epsilon,
|
|
inplace, gc, dc):
|
|
print("dc0: {}, dc1: {}".format(dc[0], dc[1]))
|
|
op = core.CreateOperator(
|
|
"SpatialBN",
|
|
["X", "scale", "bias", "running_mean", "running_var"],
|
|
["X" if inplace else "Y",
|
|
"running_mean", "running_var", "saved_mean", "saved_var"],
|
|
order=order,
|
|
is_test=False,
|
|
epsilon=epsilon,
|
|
)
|
|
np.random.seed(1701)
|
|
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
|
|
running_mean = np.random.randn(input_channels).astype(np.float32)
|
|
running_var = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
|
|
if order == "NHWC":
|
|
X = X.swapaxes(1, 2).swapaxes(2, 3)
|
|
|
|
# TODO: It looks like IDEEP spatial_bn op outputs save_var (output[4])
|
|
# as the reciprocal of CPU op's output. Need to check back and add
|
|
# output[4] for comparison
|
|
self.assertDeviceChecks(dc, op, [X, scale, bias, running_mean, running_var],
|
|
[0, 1, 2, 3])
|
|
|
|
@given(size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 10),
|
|
batch_size=st.integers(1, 3),
|
|
seed=st.integers(0, 65535),
|
|
order=st.sampled_from(["NCHW"]),
|
|
epsilon=st.floats(min_value=1e-5, max_value=1e-2),
|
|
**mu.gcs)
|
|
@settings(deadline=None, max_examples=50)
|
|
def test_spatialbn_train_mode_gradient_check(
|
|
self, size, input_channels, batch_size, seed, order, epsilon,
|
|
gc, dc):
|
|
op = core.CreateOperator(
|
|
"SpatialBN",
|
|
["X", "scale", "bias", "mean", "var"],
|
|
["Y", "mean", "var", "saved_mean", "saved_var"],
|
|
order=order,
|
|
is_test=False,
|
|
epsilon=epsilon,
|
|
)
|
|
np.random.seed(seed)
|
|
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
|
|
mean = np.random.randn(input_channels).astype(np.float32)
|
|
var = np.random.rand(input_channels).astype(np.float32) + 0.5
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
if order == "NHWC":
|
|
X = X.swapaxes(1, 2).swapaxes(2, 3)
|
|
|
|
for input_to_check in [0, 1, 2]: # dX, dScale, dBias
|
|
self.assertGradientChecks(gc, op, [X, scale, bias, mean, var],
|
|
input_to_check, [0])
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|