mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
35 lines
932 B
Python
35 lines
932 B
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class SoftmaxTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(8, 20),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
inplace=st.booleans(),
|
|
**mu.gcs)
|
|
def test_softmax(self, size, input_channels, batch_size, inplace, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Softmax",
|
|
["X"],
|
|
["Y"],
|
|
axis=1,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|