mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
382 lines
12 KiB
Python
382 lines
12 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
from functools import reduce
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class FcTest(hu.HypothesisTestCase):
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
@settings(deadline=1000)
|
|
def test_fc_2_dims(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
@given(n=st.integers(1, 5),
|
|
m=st.integers(1, 5),
|
|
c=st.integers(1, 5),
|
|
h=st.integers(1, 5),
|
|
w=st.integers(1, 5),
|
|
axis=st.integers(1, 3),
|
|
**mu.gcs)
|
|
def test_fc_with_axis(self, n, m, c, h, w, axis, gc, dc):
|
|
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
|
|
k = reduce((lambda x, y: x * y), [n, c, h, w][axis - 4:])
|
|
nn = reduce((lambda x, y: x * y), [n, c, h, w][:axis])
|
|
W = np.random.rand(m, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(m).astype(np.float32) - 0.5
|
|
dY = np.random.rand(nn, m).astype(np.float32) - 0.5
|
|
|
|
op0 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis=axis,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
op0_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis=axis,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('W', W, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(op0)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[0])
|
|
workspace.RunOperatorOnce(op0_bw)
|
|
dW0 = workspace.FetchBlob('dW')
|
|
db0 = workspace.FetchBlob('db')
|
|
|
|
op1 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis=axis,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
op1_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis=axis,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('W', W, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.RunOperatorOnce(op1)
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[1])
|
|
workspace.RunOperatorOnce(op1_bw)
|
|
dW1 = workspace.FetchBlob('dW')
|
|
db1 = workspace.FetchBlob('db')
|
|
|
|
Y0 = Y0.flatten()
|
|
Y1 = Y1.flatten()
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1)
|
|
print(Y0)
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
dW0 = dW0.flatten()
|
|
dW1 = dW1.flatten()
|
|
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
|
|
print(dW1)
|
|
print(dW0)
|
|
print(np.max(np.abs(dW1 - dW0)))
|
|
self.assertTrue(False)
|
|
|
|
db0 = db0.flatten()
|
|
db1 = db1.flatten()
|
|
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
|
|
print(db1)
|
|
print(db0)
|
|
print(np.max(np.abs(db1 - db0)))
|
|
self.assertTrue(False)
|
|
|
|
@given(n=st.integers(1, 5),
|
|
o=st.integers(1, 5),
|
|
i=st.integers(1, 5),
|
|
h=st.integers(1, 5),
|
|
w=st.integers(1, 5),
|
|
axis_w=st.integers(1, 3),
|
|
**mu.gcs)
|
|
@settings(deadline=1000)
|
|
def test_fc_with_axis_w(self, n, o, i, h, w, axis_w, gc, dc):
|
|
W = np.random.rand(o, i, h, w).astype(np.float32) - 0.5
|
|
k = reduce((lambda x, y: x * y), [o, i, h, w][axis_w - 4:])
|
|
m = reduce((lambda x, y: x * y), [o, i, h, w][:axis_w])
|
|
X = np.random.rand(n, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(m).astype(np.float32) - 0.5
|
|
dY = np.random.rand(n, m).astype(np.float32) - 0.5
|
|
|
|
op0 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis_w=axis_w,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
op0_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis_w=axis_w,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('W', W, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(op0)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[0])
|
|
workspace.RunOperatorOnce(op0_bw)
|
|
dW0 = workspace.FetchBlob('dW')
|
|
db0 = workspace.FetchBlob('db')
|
|
|
|
op1 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis_w=axis_w,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
op1_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis_w=axis_w,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('W', W, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.RunOperatorOnce(op1)
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[1])
|
|
workspace.RunOperatorOnce(op1_bw)
|
|
dW1 = workspace.FetchBlob('dW')
|
|
db1 = workspace.FetchBlob('db')
|
|
|
|
Y0 = Y0.flatten()
|
|
Y1 = Y1.flatten()
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1)
|
|
print(Y0)
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
dW0 = dW0.flatten()
|
|
dW1 = dW1.flatten()
|
|
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
|
|
print(dW1)
|
|
print(dW0)
|
|
print(np.max(np.abs(dW1 - dW0)))
|
|
self.assertTrue(False)
|
|
|
|
db0 = db0.flatten()
|
|
db1 = db1.flatten()
|
|
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
|
|
print(db1)
|
|
print(db0)
|
|
print(np.max(np.abs(db1 - db0)))
|
|
self.assertTrue(False)
|
|
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
@settings(deadline=10000)
|
|
def test_fc_4_dims_src(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k * m * m).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
@settings(deadline=10000)
|
|
def test_fc_4_dims(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
@given(n=st.integers(2, 5), m=st.integers(2, 5),
|
|
k=st.integers(2, 5), **mu.gcs_cpu_ideep)
|
|
def test_int8_fc_4_dims(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
|
|
w = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
fc_fp32 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'w', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('w', w, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(fc_fp32)
|
|
Y = workspace.FetchBlob('Y')
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
Y_absmax = np.array([np.absolute(Y).max()]).astype(np.float32)
|
|
if Y.min() >= 0:
|
|
Y_scale = Y_absmax / 0xFF
|
|
Y_zero_point = 0
|
|
else:
|
|
Y_scale = Y_absmax / 0x7F
|
|
Y_zero_point = 128
|
|
|
|
X_absmax = np.array([np.absolute(X).max()]).astype(np.float32)
|
|
if X.min() >= 0:
|
|
X_scale = X_absmax / 0xFF
|
|
X_zero_point = 0
|
|
else:
|
|
X_scale = X_absmax / 0x7F
|
|
X_zero_point = 128
|
|
|
|
w_absmax = np.array([np.absolute(w[i, ...]).max() for i in range(w.shape[0])]).astype(np.float32)
|
|
w_scale = w_absmax / 0x7F
|
|
w_zero_point = 128
|
|
w = np.transpose(w, (0, 2, 3, 1)).astype(np.float32)
|
|
w_bytes = np.rint([w[i, ...] / w_scale[i] for i in range(w.shape[0])]).astype(np.int8) + w_zero_point
|
|
|
|
w_filler = core.CreateOperator(
|
|
"Int8GivenTensorFill",
|
|
[], ["wi"],
|
|
shape=w.shape,
|
|
values=w_bytes.astype(np.uint8).tobytes(),
|
|
Y_zero_point=w_zero_point,
|
|
Y_scales=w_scale,
|
|
device_option=dc[1],
|
|
)
|
|
|
|
b_scale = w_scale * X_scale
|
|
b_zero_point = 0
|
|
b_bytes = np.rint([b[i] / b_scale[i] for i in range(b.shape[0])]).astype(np.int32)
|
|
b_filler = core.CreateOperator(
|
|
"Int8GivenIntTensorFill",
|
|
[], ["bi"],
|
|
shape=b.shape,
|
|
values=b_bytes,
|
|
Y_zero_point=b_zero_point,
|
|
Y_scales=b_scale,
|
|
device_option=dc[1],
|
|
)
|
|
|
|
sw2nhwc = core.CreateOperator(
|
|
"NCHW2NHWC",
|
|
["Xi"],
|
|
["Xi_nhwc"],
|
|
device_option=dc[1]
|
|
)
|
|
|
|
quantize_X = core.CreateOperator(
|
|
"Int8Quantize",
|
|
["Xi_nhwc"],
|
|
["Xi_quantized"],
|
|
engine="DNNLOWP",
|
|
device_option=dc[1],
|
|
Y_zero_point=X_zero_point,
|
|
Y_scale=X_scale[0],
|
|
)
|
|
|
|
fc = core.CreateOperator(
|
|
'Int8FC',
|
|
['Xi_quantized', 'wi', 'bi'],
|
|
["Y_out"],
|
|
engine="DNNLOWP",
|
|
device_option=dc[1],
|
|
Y_zero_point=Y_zero_point,
|
|
Y_scale=Y_scale[0],
|
|
)
|
|
|
|
net = caffe2_pb2.NetDef()
|
|
net.op.extend([w_filler, b_filler, sw2nhwc, quantize_X, fc])
|
|
|
|
workspace.FeedBlob("Xi", X, dc[1])
|
|
workspace.RunNetOnce(net)
|
|
Y_out = workspace.FetchBlob("Y_out")
|
|
|
|
MSE = np.square(np.subtract(Y, Y_out)).mean()
|
|
if MSE > 0.005:
|
|
print(Y.flatten())
|
|
print(Y_out.flatten())
|
|
print(np.max(np.abs(Y_out - Y)))
|
|
print("MSE", MSE)
|
|
self.assertTrue(False)
|
|
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|