mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
100 lines
3.0 KiB
Python
100 lines
3.0 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from random import randint
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class CopyTest(unittest.TestCase):
|
|
def _get_deep_device(self):
|
|
return caffe2_pb2.DeviceOption(device_type=caffe2_pb2.IDEEP)
|
|
|
|
def test_copy_to_ideep(self):
|
|
op = core.CreateOperator(
|
|
"CopyCPUToIDEEP",
|
|
["X"],
|
|
["X_ideep"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X_ideep")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_to_ideep_zero_dim(self):
|
|
op = core.CreateOperator(
|
|
"CopyCPUToIDEEP",
|
|
["X"],
|
|
["X_ideep"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = 0
|
|
c = randint(1, 128)
|
|
X = np.random.rand(n, c).astype(np.float32)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X_ideep")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X, self._get_deep_device())
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep_zero_dim(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = 0
|
|
c = randint(1, 64)
|
|
X = np.random.rand(n, c).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X, self._get_deep_device())
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep_fallthrough(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|