mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
46 lines
1.2 KiB
Python
46 lines
1.2 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class LRNTest(hu.HypothesisTestCase):
|
|
@given(input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
im_size=st.integers(1, 10),
|
|
order=st.sampled_from(["NCHW"]),
|
|
**mu.gcs)
|
|
@settings(deadline=10000)
|
|
def test_LRN(self, input_channels,
|
|
batch_size, im_size, order,
|
|
gc, dc):
|
|
op = core.CreateOperator(
|
|
"LRN",
|
|
["X"],
|
|
["Y", "Y_scale"],
|
|
size=5,
|
|
alpha=0.001,
|
|
beta=0.75,
|
|
bias=2.0,
|
|
order=order,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, im_size, im_size).astype(np.float32)
|
|
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|