mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46457 Wanted to see if using CopyMatrix specialized for float that uses mkl_somatcopy can be faster but it wasn't. Still want to check in benchmark that can be used later. Test Plan: . Reviewed By: dskhudia Differential Revision: D24345901 fbshipit-source-id: d3e68dbb560e3138fda11c55789cd41bc0715c6d
32 lines
1.2 KiB
Python
32 lines
1.2 KiB
Python
import argparse
|
|
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
|
|
|
|
def benchmark_concat(num_inputs, input_dim, axis, add_axis, iterations):
|
|
input_names = [f"input{i}" for i in range(num_inputs)]
|
|
for n in input_names:
|
|
workspace.FeedBlob(n, np.random.randn(*input_dim).astype(np.float32))
|
|
|
|
net = core.Net("benchmark_net")
|
|
net.Concat(input_names, ["output", "split_info"], axis=axis, add_axis=add_axis)
|
|
workspace.CreateNet(net)
|
|
|
|
runtimes = workspace.BenchmarkNet(net.Name(), 1, iterations, True)
|
|
print(f"{num_inputs * np.prod(input_dim) * 4 / runtimes[1] / 1e6} GB/s")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="minimal benchmark for concat.")
|
|
parser.add_argument("--num_inputs", type=int, default=2)
|
|
parser.add_argument("--input_dim", nargs="+", type=int, required=True)
|
|
parser.add_argument("--axis", type=int, default=-1)
|
|
parser.add_argument("--add_axis", type=int, default=0)
|
|
parser.add_argument("--iterations", type=int, default=64)
|
|
args, extra_args = parser.parse_known_args()
|
|
core.GlobalInit(["python"] + extra_args)
|
|
benchmark_concat(
|
|
args.num_inputs, args.input_dim, args.axis, args.add_axis, args.iterations
|
|
)
|