mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: As part of the Variable/Tensor merge, we want to be able to pass Variables into Caffe2 without doing extra shallow copy, to improve performance and also allow for in-place mutations in Caffe2 ops. There are a few approaches outlined in https://github.com/pytorch/pytorch/pull/22418, and this PR is the chosen approach. Specifically, we can have the assumption that we won't be connecting autograd to C2 gradients at any point (as it's too tricky and not that useful). Therefore, we can pass Variable into Caffe2 ops by requiring that all Variables in Caffe2 don't require grad. For code paths in Caffe2 that might potentially track gradients (e.g. `ScriptModuleOp` and `call_caffe2_op_from_c10`), we use the `torch::NoGradGuard` to make sure gradients are not tracked. This supersedes https://github.com/pytorch/pytorch/pull/22418. Pull Request resolved: https://github.com/pytorch/pytorch/pull/22473 Differential Revision: D16099042 Pulled By: yf225 fbshipit-source-id: 57efc3c7cfb3048d9abe90e63759acc14ebd2972
586 lines
20 KiB
C++
586 lines
20 KiB
C++
#include <torch/csrc/autograd/python_variable.h>
|
|
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/Types.h>
|
|
#include <torch/csrc/autograd/edge.h>
|
|
#include <torch/csrc/autograd/python_cpp_function.h>
|
|
#include <torch/csrc/autograd/python_hook.h>
|
|
#include <torch/csrc/autograd/python_variable_indexing.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/autograd/functions/accumulate_grad.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/generated/VariableType.h>
|
|
#include <torch/csrc/autograd/utils/python_error_messages.h>
|
|
#include <torch/csrc/autograd/utils/wrap_outputs.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <pybind11/pybind11.h>
|
|
|
|
#include <structmember.h>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch;
|
|
using namespace torch::autograd;
|
|
|
|
namespace py = pybind11;
|
|
|
|
PyObject *THPVariableClass = nullptr;
|
|
|
|
static const char* VOLATILE_WARNING =
|
|
"volatile was removed and now has no effect. Use "
|
|
"`with torch.no_grad():` instead.";
|
|
|
|
// Creates a new Python object for a Variable. The Variable must not already
|
|
// have a PyObject* associated with it.
|
|
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, Variable var)
|
|
{
|
|
PyObject* obj = type->tp_alloc(type, 0);
|
|
if (obj) {
|
|
auto v = (THPVariable*) obj;
|
|
new (&v->cdata) Variable(std::move(var));
|
|
v->cdata.set_pyobj(obj);
|
|
if (auto fn = dynamic_cast<PyFunction*>(v->cdata.grad_fn_unsafe())) {
|
|
// Create a new reference to the THPFunction. This ensures that ref count
|
|
// of the THPFunction is at least the number of referring THPVariables.
|
|
const auto output_nr = v->cdata.output_nr();
|
|
auto grad_fn = THPFunction_asFunction((THPFunction*)fn->obj);
|
|
v->cdata.set_gradient_edge({std::move(grad_fn), output_nr});
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
PyObject * THPVariable_Wrap(Variable var)
|
|
{
|
|
if (!var.defined()) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
if (auto obj = var.pyobj()) {
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
return THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, std::move(var));
|
|
}
|
|
|
|
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(self->backward_hooks);
|
|
// We don't want to traverse the grad_fn, even if the Variable owns it and the
|
|
// shared pointer's use count is 1. This is because we would need to treat
|
|
// the grad_fn as part of the Python state and hold the GIL sometimes when
|
|
// grad_fn's shared_ptr is copied, otherwise a race condition with the Python
|
|
// GC could occur. Holding the GIL when the shared_ptr is copied adds
|
|
// undesirable complexity/overhead.
|
|
//
|
|
// When hooks, a Variable, and its grad_fn are involved in a Python reference
|
|
// cycle, because we're not traversing the grad_fn, the reference cycle will
|
|
// in fact leak.
|
|
//
|
|
// See https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
|
|
// for more details about the race condition involving traversing the grad_fn
|
|
// and the python GC.
|
|
if (self->cdata.defined()) {
|
|
for (const auto& hook : self->cdata.hooks()) {
|
|
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
|
|
Py_VISIT(pyhook->dict);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int THPVariable_clear(THPVariable *self)
|
|
{
|
|
Py_CLEAR(self->backward_hooks);
|
|
if (self->cdata.defined()) {
|
|
if (auto grad_acc = self->cdata.try_get_grad_accumulator()) {
|
|
grad_acc->pre_hooks().clear();
|
|
}
|
|
self->cdata.set_pyobj(nullptr);
|
|
}
|
|
self->cdata.reset();
|
|
return 0;
|
|
}
|
|
|
|
static void THPVariable_dealloc(THPVariable* self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
THPVariable_clear(self);
|
|
self->cdata.~Variable();
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
static PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
|
|
auto tensor = torch::utils::legacy_tensor_ctor(torch::tensors::get_default_tensor_type_id(), torch::tensors::get_default_scalar_type(), args, kwargs);
|
|
return THPVariable_NewWithVar(type, std::move(tensor));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Instantiates a subclass of torch.Tensor. Used by nn.Parameter()
|
|
static PyObject* THPVariable_make_subclass(PyObject* _ignored, PyObject* args, PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
static PythonArgParser parser({
|
|
"_make_subclass(PyObject* cls, Tensor data, bool require_grad=False)",
|
|
});
|
|
ParsedArgs<3> parsed_args{};
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
PyObject* cls = r.pyobject(0);
|
|
if (!PyType_Check(cls)) {
|
|
throw TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
|
|
}
|
|
auto data = as_variable_ref(r.tensor(1)).tensor_data();
|
|
auto var = make_variable(data, r.toBool(2));
|
|
return THPVariable_NewWithVar((PyTypeObject*)cls, std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
typedef PyObject *(*getter)(PyObject *, void *);
|
|
typedef int (*setter)(PyObject *, PyObject *, void *);
|
|
|
|
PyObject *THPVariable_get_T(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return THPVariable_Wrap(var.numpy_T());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_cdata(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_version(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
return PyInt_FromLong(var.current_version());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad_fn(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
if (!var.grad_fn()) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return functionToPyObject(var.grad_fn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
|
|
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
|
|
self->cdata.detach_();
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
static PyObject *THPVariable_is_leaf(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(!self->cdata.grad_fn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_get_data(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto var = self->cdata.variable_data();
|
|
return THPVariable_Wrap(var);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_data(THPVariable *self, PyObject *data)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, data, "Deleting tensor data is not allowed. Delete tensor instead!");
|
|
if (!THPVariable_Check(data)) {
|
|
throw torch::TypeError("Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
self->cdata.set_data(THPVariable_Unpack(data));
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_grad(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPVariable_Wrap(self->cdata.grad());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_grad(THPVariable *self, PyObject *py_grad)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& var = self->cdata;
|
|
if (!py_grad || py_grad == Py_None) {
|
|
var.grad().reset();
|
|
return 0;
|
|
}
|
|
|
|
THPUtils_assertRet(-1, THPVariable_Check(py_grad),
|
|
"expected Variable or None (got %s)", THPUtils_typename(py_grad));
|
|
THPUtils_assertRet(-1, self != (THPVariable*)py_grad,
|
|
"can't assign Variable as its own grad");
|
|
|
|
auto& grad = ((THPVariable*)py_grad)->cdata;
|
|
bool gradIsSparse = var.dtype() == grad.dtype() && toSparse(tensorTypeIdToBackend(var.type_id())) == tensorTypeIdToBackend(grad.type_id());
|
|
THPUtils_assertRet(-1, grad.type() == var.type() || gradIsSparse,
|
|
"assigned grad has data of a different type");
|
|
if (var.is_cuda()) {
|
|
THPUtils_assertRet(-1, grad.get_device() == var.get_device(),
|
|
"assigned grad has data located on a different device");
|
|
}
|
|
THPUtils_assertRet(-1, grad.sizes().equals(var.sizes()),
|
|
"assigned grad has data of a different size");
|
|
|
|
var.grad() = grad;
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_volatile(THPVariable *self)
|
|
{
|
|
const char* msg = "volatile was removed (Variable.volatile is always False)";
|
|
PyErr_WarnEx(PyExc_UserWarning, msg, 1);
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
int THPVariable_set_volatile(THPVariable *self, PyObject *obj)
|
|
{
|
|
return PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
|
|
}
|
|
|
|
PyObject *THPVariable_get_output_nr(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
const auto output_nr = static_cast<long>(self->cdata.output_nr());
|
|
return PyInt_FromLong(output_nr);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_requires_grad(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(self->cdata.requires_grad());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_ndim(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return PyInt_FromLong(self->cdata.dim());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
PyObject *THPVariable_get_names(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
// The long-term plan is to return a list of (python) torch.Dimname.
|
|
// However, for now, return a list of string.
|
|
size_t size = self->cdata.dim();
|
|
THPObjectPtr tuple(PyTuple_New(size));
|
|
if (!tuple) throw python_error();
|
|
|
|
if (!self->cdata.is_named()) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
PyTuple_SET_ITEM(tuple.get(), i, Py_None);
|
|
}
|
|
return tuple.release();
|
|
}
|
|
|
|
const auto dimnames = self->cdata.names().value();
|
|
for (size_t i = 0; i < size; ++i) {
|
|
PyObject* str = Py_None;
|
|
if (dimnames[i].type() != at::NameType::WILDCARD) {
|
|
str = THPUtils_packString(dimnames[i].full_name().toUnqualString());
|
|
if (!str) throw python_error();
|
|
}
|
|
PyTuple_SET_ITEM(tuple.get(), i, str);
|
|
}
|
|
return tuple.release();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
#endif
|
|
|
|
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj && PyBool_Check(obj), "requires_grad must be a bool");
|
|
auto& var = self->cdata;
|
|
auto requires_grad = (obj == Py_True);
|
|
if (!var.is_leaf()) {
|
|
THPUtils_setError(autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
|
|
return -1;
|
|
}
|
|
if (requires_grad && !var.is_floating_point()) {
|
|
THPUtils_setError("only Tensors of floating point dtype can require gradients");
|
|
return -1;
|
|
}
|
|
var.set_requires_grad(requires_grad);
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_name(THPVariable* self)
|
|
{
|
|
if (self->cdata.name() == "")
|
|
Py_RETURN_NONE;
|
|
return THPUtils_packString(self->cdata.name().c_str());
|
|
}
|
|
|
|
PyObject *THPVariable_get_backwards_hooks(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if (self->backward_hooks) {
|
|
Py_INCREF(self->backward_hooks);
|
|
return self->backward_hooks;
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assertRet(-1, obj, "Deletion of _backwards_hooks not allowed!");
|
|
if (obj == Py_None) {
|
|
obj = nullptr;
|
|
}
|
|
Py_XINCREF(obj);
|
|
Py_XDECREF(self->backward_hooks);
|
|
self->backward_hooks = obj;
|
|
self->cdata.clear_hooks();
|
|
if (obj) {
|
|
self->cdata.add_hook(std::make_shared<PyFunctionPreHook>(obj, 0));
|
|
}
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
PyObject *THPVariable_get_base(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
if (self->cdata.is_view()) {
|
|
return THPVariable_Wrap(self->cdata.base());
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_get_shape(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
return THPSize_New(self->cdata);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_cuda(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_cuda());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_sparse(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_sparse());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_mkldnn(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_mkldnn());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject *THPVariable_is_quantized(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(self_.is_quantized());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject *THPVariable_dtype(THPVariable *self)
|
|
{
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(torch::getDtype(self_.scalar_type()));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_layout(THPVariable* self) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = self->cdata;
|
|
return torch::autograd::utils::wrap(torch::getLayout(self_.type().backend()));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject * THPVariable_device(THPVariable* self) {
|
|
HANDLE_TH_ERRORS
|
|
return THPDevice_New(self->cdata.device());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static struct PyGetSetDef THPVariable_properties[] = {
|
|
{"T", (getter)THPVariable_get_T, nullptr, nullptr, nullptr},
|
|
{"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
|
|
{"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
|
|
{"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
|
|
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, nullptr, nullptr},
|
|
{"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
|
|
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, nullptr, nullptr},
|
|
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr}, // only for legacy reasons
|
|
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr},
|
|
{"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
|
|
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, nullptr, nullptr},
|
|
{"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
|
|
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, nullptr, nullptr},
|
|
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
|
|
{"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
|
|
{"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
|
|
{"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
|
|
{"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
|
|
{"is_mkldnn", (getter)THPVariable_is_mkldnn, nullptr, nullptr, nullptr},
|
|
{"is_quantized", (getter)THPVariable_is_quantized, nullptr, nullptr, nullptr},
|
|
{"dtype", (getter)THPVariable_dtype, nullptr, nullptr, nullptr},
|
|
{"layout", (getter)THPVariable_layout, nullptr, nullptr, nullptr},
|
|
{"device", (getter)THPVariable_device, nullptr, nullptr, nullptr},
|
|
{"ndim", (getter)THPVariable_get_ndim, nullptr, nullptr, nullptr},
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
{"names", (getter)THPVariable_get_names, nullptr, nullptr, nullptr},
|
|
#endif
|
|
{nullptr}
|
|
};
|
|
|
|
static PyMappingMethods THPVariable_as_mapping = {
|
|
THPVariable_length,
|
|
THPVariable_getitem,
|
|
THPVariable_setitem,
|
|
};
|
|
|
|
static PyMethodDef extra_methods[] = {
|
|
{"_make_subclass", (PyCFunction)THPVariable_make_subclass, METH_STATIC | METH_VARARGS | METH_KEYWORDS, nullptr},
|
|
{nullptr}
|
|
};
|
|
|
|
PyTypeObject THPVariableType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C._TensorBase", /* tp_name */
|
|
sizeof(THPVariable), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)THPVariable_dealloc, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
&THPVariable_as_mapping, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
(traverseproc)THPVariable_traverse, /* tp_traverse */
|
|
(inquiry)THPVariable_clear, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
nullptr, /* tp_methods */
|
|
nullptr, /* tp_members */
|
|
THPVariable_properties, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPVariable_pynew /* tp_new */
|
|
};
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
extern PyMethodDef variable_methods[];
|
|
extern void initTorchFunctions(PyObject *module);
|
|
|
|
void initTensorImplConversion(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def("_wrap_tensor_impl", [](void* ptr) {
|
|
auto p = c10::intrusive_ptr<c10::TensorImpl, at::UndefinedTensorImpl>::
|
|
unsafe_reclaim_from_nonowning(static_cast<c10::TensorImpl*>(ptr));
|
|
TORCH_CHECK(p.defined(), "Can't wrap undefined tensor");
|
|
auto tensor = at::Tensor::wrap_tensor_impl(std::move(p));
|
|
// For now, there is no guarantee that the tensors returned from Caffe2 ops
|
|
// are not Variables, because inputs to Caffe2 ops can be Variables.
|
|
//
|
|
// In the near future, once we make every tensor a Variable, we can remove
|
|
// the `tensor.is_variable()` check and directly return `tensor` as a Variable.
|
|
return py::cast(tensor.is_variable() ? torch::autograd::Variable(tensor) :
|
|
torch::autograd::make_variable(std::move(tensor), false));
|
|
});
|
|
// set on the module level to avoid mixing pybind and plain CPython extensions
|
|
m.def("_tensor_impl_raw_handle", [](torch::autograd::Variable* t) -> void* {
|
|
// We return a raw non-owning pointer here, we rely on surrounding
|
|
// code to keep the original tensor alive
|
|
return t->getIntrusivePtr().get();
|
|
});
|
|
}
|
|
}}
|
|
|
|
bool THPVariable_initModule(PyObject *module)
|
|
{
|
|
static std::vector<PyMethodDef> methods;
|
|
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
|
|
THPUtils_addPyMethodDefs(methods, extra_methods);
|
|
THPVariableType.tp_methods = methods.data();
|
|
if (PyType_Ready(&THPVariableType) < 0)
|
|
return false;
|
|
Py_INCREF(&THPVariableType);
|
|
PyModule_AddObject(module, "_TensorBase", (PyObject *)&THPVariableType);
|
|
torch::autograd::initTorchFunctions(module);
|
|
torch::autograd::initTensorImplConversion(module);
|
|
return true;
|
|
}
|