mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This PR supports symbol inputs to graph partition functions. Before this PR, we rely on `node.read_writes` to get partition inputs. However, this does not cover symbol inputs.
In this PR, for each graph partition, we collect all symbol inputs which are required to be in scope to successfully perform codegen, including:
- free symbols used in partition nodes.
- free symbols in partition input/node shapes, strides, and offsets. This is needed for recording cudagraphs for tensors with dynamic shapes.
### Note1: MutationLayout
In this example, node.layout is MutationLayoutSHOULDREMOVE. The symint from index `n` does not appear in the size, offset, stridese of node.layout. This symint appear in node.layout.target. So we need extra handle for it.
```python
x = torch.zeros(7, device="cuda")
def fn(n, a):
a[n] = -1
return a
opt_fn = torch.compile(fn, fullgraph=True)
for n in range(2, x.shape[0]):
opt_fn(n, x)
```
### Note2: Composability with Padded Tensor Subclass
W/o graph partition, Padded Tensor subclass lifts outer shapes to input arguments (i.e., arg0_1 for s0, arg1_1 for s1) but does not lift inner shapes (i.e., s2 and s3). Since cudagraph cache relies on integer inputs, it will cache on outer shapes and ignore inner shapes, which is bad.
```
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args
args.clear()
s0 = arg0_1
s1 = arg1_1
arg2_1_size = arg2_1.size()
s2 = arg2_1_size[0]
s3 = arg2_1_size[1]
assert_size_stride(arg2_1, (s2, s3), (s3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((s2, s3), (s3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1, mul], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_0_xnumel = s2*s3
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(arg2_1, buf0, triton_poi_fused_add_mul_0_xnumel, stream=stream0)
del arg2_1
return (buf0, s0, s1, s1, )
```
w/ graph partition, the partition function only includes tensor and inner shapes as inputs, to make sure the cudagraph caching is correct. Full Comparison: [code](https://www.internalfb.com/intern/diffing/?paste_number=1761674743)
```python
def call(self, args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args
args.clear()
s0 = arg0_1
s1 = arg1_1
arg2_1_size = arg2_1.size()
s2 = arg2_1_size[0]
s3 = arg2_1_size[1]
assert_size_stride(arg2_1, (s2, s3), (s3, 1))
partition0_args = [arg2_1, s2, s3]
del arg2_1
(buf0,) = self.partitions[0](partition0_args)
del partition0_args
return (buf0, s0, s1, s1, )
```
The number of cudagraphs is validated below: (also added to test)
```python
import torch
from padded_tensor import PaddedTensor
# Turning off graph_partition leads to
# torch._inductor.cudagraph_trees.get_container(0).tree_manager.new_graph_id().id=6
# at the end, which is wrong.
# torch._inductor.config.graph_partition = False
# Turning on graph_partition leads to
# torch._inductor.cudagraph_trees.get_container(0).tree_manager.new_graph_id().id=4
# at the end, which is correct.
torch._inductor.config.graph_partition = True
def f(x):
x1 = x + 1
return x1 * 2
compiled_f = torch.compile(f, mode="reduce-overhead")
def run(shape):
x = torch.randn(*shape, device="cuda")
pad_x = PaddedTensor.from_tensor(x, multipliers={0:4, 1:4})
assert hasattr(pad_x, "multipliers"), breakpoint()
eager_out = f(pad_x)
for _ in range(3):
compiled_out = compiled_f(pad_x)
compiled_out = compiled_f(pad_x)
assert eager_out.shape == compiled_out.shape
assert eager_out.tensor.shape == compiled_out.tensor.shape
assert torch.allclose(eager_out.tensor, compiled_out.tensor)
# static shape. record a NEW cudagraph. 1 cudagraph in total now.
run((2,3))
# outer shape is dynamic, leading to a new dynamo graph
# this new dynamo graph forces a NEW cudagraph. 2 cudagraphs in total now
run((3,4))
# outer shape changed but inner shape does not change
# so NO new cudagraph is recorded
run((2,2))
# inner shape is dynamic now, leading to a new dynamo graph
# this new dynamo graph forces a NEW cudagraph. 3 cudagraphs in total now
run((5,6))
# does NOT record a new cudagraph
run((7,8))
# record a NEW cudagraph. 4 cudagraphs in total now
run((10,11))
assert torch._inductor.cudagraph_trees.get_container(0).tree_manager.new_graph_id().id == 4
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149458
Approved by: https://github.com/eellison
823 lines
29 KiB
Python
823 lines
29 KiB
Python
import abc
|
|
import dataclasses
|
|
import itertools
|
|
import logging
|
|
import re
|
|
from collections.abc import Iterable, Sequence
|
|
from typing import Any, Callable, Optional, TypeVar, Union
|
|
from typing_extensions import Self
|
|
from unittest.mock import patch
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
from torch.fx.experimental.symbolic_shapes import free_symbols, free_unbacked_symbols
|
|
from torch.utils._ordered_set import OrderedSet
|
|
|
|
from ..utils._sympy.symbol import make_symbol, SymT
|
|
from .codegen.common import index_prevent_reordering
|
|
from .ops_handler import DefaultHandler
|
|
from .utils import (
|
|
get_dtype_size,
|
|
reduction_num_outputs,
|
|
sympy_index_symbol,
|
|
sympy_str,
|
|
sympy_subs,
|
|
VarRanges,
|
|
)
|
|
from .virtualized import ReductionType, V
|
|
|
|
|
|
T = TypeVar("T")
|
|
|
|
log = logging.getLogger(__name__)
|
|
is_indirect = re.compile(r"indirect|tmp").search
|
|
|
|
|
|
class Dep(abc.ABC):
|
|
name: str
|
|
index: sympy.Expr
|
|
|
|
@abc.abstractmethod
|
|
def rename(self, renames: dict[str, str]) -> Self:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_numel(self) -> sympy.Expr:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def numbytes_hint(self) -> int:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def has_unbacked_symbols(self) -> bool:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def is_contiguous(self) -> bool:
|
|
pass
|
|
|
|
def normalize_with_stride_order(self, prefix: str = "t") -> Self:
|
|
return self
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class MemoryDep(Dep):
|
|
name: str
|
|
index: sympy.Expr
|
|
var_names: tuple[sympy.Symbol, ...]
|
|
size: tuple[sympy.Expr, ...]
|
|
mode: Optional[str] = None
|
|
|
|
def __repr__(self) -> str:
|
|
maybe_mode = ""
|
|
if self.mode is not None:
|
|
maybe_mode = f", {self.mode}"
|
|
return f"MemoryDep({self.name!r}, {self.index}, {self.ranges}{maybe_mode})"
|
|
|
|
@property
|
|
def num_vars(self) -> int:
|
|
return len(self.var_names)
|
|
|
|
def decide_loop_order_to_match(self, other: "MemoryDep") -> Optional[list[int]]:
|
|
"""
|
|
Can return None if not able to decide loop orders.
|
|
"""
|
|
assert self.num_vars == other.num_vars
|
|
|
|
# ignore broadcast for now since broadcast causes extra 0 strides
|
|
# which makes it hard to decide the correct loop orders.
|
|
if self.num_vars != len(self.index.free_symbols):
|
|
return None
|
|
if other.num_vars != len(other.index.free_symbols):
|
|
return None
|
|
|
|
# bail out if any size is 0 or 1
|
|
# For size == 0, it's an empty tensor, any strides for that dimension
|
|
# are equivalent. Skip for simplicity and it may not matter that much.
|
|
#
|
|
# For size == 1, it cause cause tie for strides of different dimensions.
|
|
# Also when we first time create LoopBody in ComputedBuffer.simplify_and_reorder
|
|
# we can dependencies.index_vars_squeeze which should already sqeeuze
|
|
# the size == 1 dimensions.
|
|
if any(s == 0 or s == 1 for s in itertools.chain(self.size, other.size)):
|
|
return None
|
|
|
|
# Extract strides for both expression
|
|
self_strides = V.graph.sizevars.stride_hints(self.index, self.var_names)
|
|
other_strides = V.graph.sizevars.stride_hints(other.index, other.var_names)
|
|
|
|
# Even if the shape contains no 0/1, some complex index expression may
|
|
# still have duplicate stride values. Here is an example:
|
|
# https://gist.github.com/shunting314/511a7e1ec88aa2e1a8ec85d8445ab129
|
|
# We don't reorder the loop for these cases for now, but in theory
|
|
# we could improve the algorithm to detect the correct loop orders.
|
|
if len(OrderedSet(self_strides)) != len(self_strides) or len(
|
|
OrderedSet(other_strides)
|
|
) != len(other_strides):
|
|
log.debug(
|
|
"unable to decide loop order. self_dep=%s v.s. other_dep=%s, self_strides=%s v.s. other_strides=%s",
|
|
self,
|
|
other,
|
|
self_strides,
|
|
other_strides,
|
|
)
|
|
return None
|
|
|
|
# May hanppen if self and other are as follows
|
|
# MemoryDep('addmm_6', 393216*d0 + 768*d1 + d2, {d0: 16, d1: 512, d2: 768}, None)
|
|
# MemoryDep('addmm_6', 98304*d0 + d1 + 768*d2, {d0: 64, d1: 768, d2: 128}, None)
|
|
if OrderedSet(self_strides) != OrderedSet(other_strides):
|
|
return None
|
|
|
|
stride_to_index = {s: i for i, s in enumerate(self_strides)}
|
|
order = [stride_to_index[s] for s in other_strides]
|
|
|
|
assert OrderedSet(order) == OrderedSet(range(0, self.num_vars))
|
|
return order
|
|
|
|
def get_offset(self) -> sympy.Expr:
|
|
"""
|
|
Return the offset by setting every variable to be 0.
|
|
"""
|
|
return sympy_subs(self.index, dict.fromkeys(self.var_names, 0))
|
|
|
|
def normalize(self) -> "MemoryDep":
|
|
"""
|
|
Normalize by merging loops. The different to normalize_with_stride_order is,
|
|
this method does not reorder loops while normalize_with_stride_order reorder
|
|
loops based on stride order.
|
|
"""
|
|
return MemoryDep(
|
|
self.name,
|
|
*_RecordLoadStoreInner._normalize(self.index, self.ranges), # type: ignore[arg-type]
|
|
self.mode,
|
|
)
|
|
|
|
def normalize_with_stride_order(self, prefix: str = "t") -> "MemoryDep":
|
|
r"""
|
|
Used to decide if two MemoryDep does not equal due to different loop orders.
|
|
More specifically, when dep1 and dep2 are not equal, we can normalize
|
|
both and check if they are equal after that. If yes, then the mismatch is
|
|
caused by different loop orders.
|
|
"""
|
|
# import here to avoid circular import
|
|
from torch._inductor import ir
|
|
|
|
strides = V.graph.sizevars.stride_hints(self.index, self.var_names)
|
|
|
|
# pick a loop order with stride ordered decreasingly
|
|
order = sorted(range(len(strides)), key=strides.__getitem__, reverse=True)
|
|
stride_reorder = ir.same_reorder(order)
|
|
sizes = self.size
|
|
var_names = self.var_names
|
|
|
|
new_reordered_sizes = stride_reorder(sizes)
|
|
new_reordered_var_names = stride_reorder(var_names)
|
|
|
|
new_simplified_sizes, reindex, _prune = V.graph.sizevars._simplify_loops(
|
|
new_reordered_var_names,
|
|
new_reordered_sizes,
|
|
index_prevent_reordering(
|
|
[self.index], new_reordered_var_names, new_reordered_sizes
|
|
),
|
|
)
|
|
|
|
# now let's create new symbols with the passed in prefix
|
|
var_ranges, add_var = var_builder(prefix)
|
|
replacement = dict(
|
|
zip(
|
|
new_reordered_var_names,
|
|
reindex([add_var(x) for x in new_simplified_sizes]),
|
|
)
|
|
)
|
|
new_index = sympy_subs(sympy.expand(self.index), replacement) # type: ignore[arg-type] # next PR
|
|
|
|
out = MemoryDep(
|
|
self.name, new_index, tuple(var_ranges.keys()), tuple(var_ranges.values())
|
|
) # type: ignore[arg-type]
|
|
return out
|
|
|
|
@property
|
|
def ranges(self) -> dict[sympy.Symbol, sympy.Expr]:
|
|
"""{c0: 128, c1: 512, ...}"""
|
|
return dict(zip(self.var_names, self.size))
|
|
|
|
def simplify_with_ranges(self) -> "MemoryDep":
|
|
return MemoryDep(
|
|
name=self.name,
|
|
index=V.graph.sizevars.simplify_with_ranges(self.index, self.ranges),
|
|
var_names=self.var_names,
|
|
size=self.size,
|
|
mode=self.mode,
|
|
)
|
|
|
|
def get_numel(self) -> sympy.Expr:
|
|
if self.is_indirect():
|
|
numel = V.graph.get_numel(self.name)
|
|
else:
|
|
vars: OrderedSet[sympy.Basic] = OrderedSet(self.index.free_symbols)
|
|
numel = sympy.S.One
|
|
for var, size in zip(self.var_names, self.size):
|
|
if var in vars:
|
|
numel = numel * size
|
|
return numel # type: ignore[return-value]
|
|
|
|
def rename(self, renames: dict[str, str]) -> "MemoryDep":
|
|
if self.name in renames:
|
|
return MemoryDep(
|
|
renames[self.name],
|
|
self.index,
|
|
var_names=self.var_names,
|
|
size=self.size,
|
|
mode=self.mode,
|
|
)
|
|
return self
|
|
|
|
def numbytes_hint(self) -> int:
|
|
try:
|
|
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
|
|
V.graph.get_dtype(self.name)
|
|
)
|
|
except NotImplementedError: # NoneLayout
|
|
return 0
|
|
|
|
def has_unbacked_symbols(self) -> bool:
|
|
return len(free_unbacked_symbols(self.get_numel())) > 0
|
|
|
|
def is_contiguous(self) -> bool:
|
|
if isinstance(self.index, sympy.Integer):
|
|
return True
|
|
return isinstance(self.index, sympy.Symbol) and self.index in self.var_names
|
|
|
|
def stride1_for_last_dim(self, result_for_complex_expression: bool = True) -> bool:
|
|
"""
|
|
Whether the stride for the last dimension is 1.
|
|
"""
|
|
# python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_masked_scatter_cuda_float16
|
|
# will exercise thru this corner case.
|
|
if len(self.var_names) == 0:
|
|
return True
|
|
|
|
terms = self.index.args if isinstance(self.index, sympy.Add) else [self.index]
|
|
|
|
last_sym = self.var_names[-1]
|
|
for term in terms:
|
|
if term == last_sym:
|
|
return True
|
|
|
|
# Having a >1 stride for the last dimension is bad for perf
|
|
# return False.
|
|
if (
|
|
isinstance(term, sympy.Mul)
|
|
and len(term.args) == 2
|
|
and term.args[1] == last_sym
|
|
and isinstance(term.args[0], (int, sympy.Integer))
|
|
and term.args[0] > 1
|
|
):
|
|
return False
|
|
|
|
return result_for_complex_expression
|
|
|
|
def is_scalar(self) -> bool:
|
|
if isinstance(self.index, sympy.Symbol):
|
|
return self.index not in self.var_names and not self.is_indirect()
|
|
return isinstance(self.index, (int, sympy.Integer))
|
|
|
|
def is_indirect(self) -> bool:
|
|
return any(is_indirect(v.name) for v in self.index.free_symbols) # type: ignore[attr-defined]
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class StarDep(Dep):
|
|
name: str
|
|
mode: Optional[str] = None
|
|
|
|
# depends on the entire buffer
|
|
@property
|
|
def index(self) -> sympy.Expr:
|
|
raise NotImplementedError("StarDep does not have an index")
|
|
|
|
def get_numel(self) -> sympy.Expr:
|
|
return V.graph.get_numel(self.name) # type: ignore[return-value]
|
|
|
|
def rename(self, renames: dict[str, str]) -> "StarDep":
|
|
if self.name in renames:
|
|
return StarDep(renames[self.name], self.mode)
|
|
return self
|
|
|
|
def numbytes_hint(self) -> int:
|
|
try:
|
|
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
|
|
V.graph.get_dtype(self.name)
|
|
)
|
|
except NotImplementedError:
|
|
return 0 # NoneLayout, MultiOutputLayout, etc
|
|
|
|
def has_unbacked_symbols(self) -> bool:
|
|
return len(free_unbacked_symbols(self.get_numel())) > 0
|
|
|
|
def is_contiguous(self) -> bool:
|
|
return False
|
|
|
|
def is_scalar(self) -> bool:
|
|
return False
|
|
|
|
def is_indirect(self) -> bool:
|
|
return False
|
|
|
|
|
|
# Used for tracking mutation ordering
|
|
# if A reads a buffer and B mutates it
|
|
# B must be ordered after A
|
|
#
|
|
# This is useful for a variety of reasons.
|
|
# For example, if A's read is never actually used, we can eliminate it.
|
|
# Another case is if A's buffer ends up being fused away, we never need to
|
|
# materialize that buffer
|
|
@dataclasses.dataclass(frozen=True)
|
|
class WeakDep(Dep):
|
|
# Fake dependency on unused buffer
|
|
name: str
|
|
# Buffer that is doing the mutation
|
|
mutating_buf: str
|
|
|
|
@property
|
|
def index(self) -> sympy.Expr:
|
|
raise NotImplementedError("WeakDep does not have an index")
|
|
|
|
def get_numel(self) -> sympy.Expr:
|
|
return sympy.S.One
|
|
|
|
def rename(self, renames: dict[str, str]) -> "WeakDep":
|
|
if self.name in renames:
|
|
return WeakDep(renames[self.name], self.mutating_buf)
|
|
return self
|
|
|
|
def numbytes_hint(self) -> int:
|
|
return 1 # Purely inserted for ordering, not an actual dep
|
|
|
|
def has_unbacked_symbols(self) -> bool:
|
|
return False
|
|
|
|
def is_contiguous(self) -> bool:
|
|
return False
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class IndexExprDep:
|
|
index: sympy.Expr # type: ignore[assignment]
|
|
var_names: tuple[sympy.Symbol, ...]
|
|
size: tuple[sympy.Expr, ...]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ReadWrites:
|
|
reads: OrderedSet[Dep]
|
|
writes: OrderedSet[Dep]
|
|
index_exprs: OrderedSet[IndexExprDep]
|
|
range_vars: Optional[list[sympy.Expr]] = None
|
|
var_ranges: Optional[VarRanges] = None
|
|
|
|
def rename(self, renames: dict[str, str]) -> "ReadWrites":
|
|
return ReadWrites(
|
|
OrderedSet(dep.rename(renames) for dep in self.reads),
|
|
OrderedSet(dep.rename(renames) for dep in self.writes),
|
|
self.index_exprs,
|
|
self.range_vars,
|
|
self.var_ranges,
|
|
)
|
|
|
|
def with_read(self, dep: Union[Dep, OrderedSet[Dep]]) -> "ReadWrites":
|
|
assert isinstance(dep, (WeakDep, StarDep, OrderedSet))
|
|
if not isinstance(dep, OrderedSet):
|
|
dep = OrderedSet([dep])
|
|
return ReadWrites(
|
|
OrderedSet.union(self.reads, dep),
|
|
self.writes,
|
|
self.index_exprs,
|
|
self.range_vars,
|
|
self.var_ranges,
|
|
)
|
|
|
|
def merge(self, other: "ReadWrites") -> "ReadWrites":
|
|
reads = OrderedSet.union(self.reads, other.reads)
|
|
writes = OrderedSet.union(self.writes, other.writes)
|
|
index_exprs = OrderedSet.union(self.index_exprs, other.index_exprs)
|
|
return ReadWrites(reads - writes, writes, index_exprs)
|
|
|
|
@staticmethod
|
|
def merge_list(read_writes: list["ReadWrites"]) -> "ReadWrites":
|
|
all_writes = OrderedSet.union(*[rw.writes for rw in read_writes])
|
|
all_reads = OrderedSet.union(*[rw.reads for rw in read_writes]) - all_writes
|
|
all_index_exprs = OrderedSet.union(*[rw.index_exprs for rw in read_writes])
|
|
return ReadWrites(all_reads, all_writes, all_index_exprs)
|
|
|
|
def remove_reads(self, rem_reads: OrderedSet[Dep]) -> "ReadWrites":
|
|
return ReadWrites(
|
|
self.reads - rem_reads,
|
|
self.writes,
|
|
self.index_exprs,
|
|
self.range_vars,
|
|
self.var_ranges,
|
|
)
|
|
|
|
def reads_and_writes(self) -> Iterable[Dep]:
|
|
return itertools.chain(self.reads, self.writes)
|
|
|
|
def buffer_names(self, ignore_integer_index: bool = True) -> OrderedSet[str]:
|
|
"""
|
|
Integer index is used for load_seed.
|
|
"""
|
|
names: OrderedSet[str] = OrderedSet()
|
|
for dep in self.reads_and_writes():
|
|
if not isinstance(dep, MemoryDep):
|
|
continue
|
|
if not ignore_integer_index or not isinstance(
|
|
dep.index, (int, sympy.Integer)
|
|
):
|
|
names.add(dep.name)
|
|
return names
|
|
|
|
|
|
class _RecordLoadStoreInner(V.MockHandler): # type: ignore[name-defined]
|
|
def __init__(self, var_ranges: VarRanges, normalize: bool) -> None:
|
|
super().__init__()
|
|
self._reads: OrderedSet[Dep] = OrderedSet()
|
|
self._writes: OrderedSet[MemoryDep] = OrderedSet()
|
|
self._index_exprs: OrderedSet[IndexExprDep] = OrderedSet()
|
|
self._var_ranges: VarRanges = var_ranges
|
|
self._should_normalize: bool = normalize
|
|
|
|
@staticmethod
|
|
def drop_unused_symbols(
|
|
index: Union[int, sympy.Expr],
|
|
var_names: list[sympy.Expr],
|
|
sizes: list[sympy.Expr],
|
|
) -> None:
|
|
"""
|
|
Reduction has last (reduced) dim in its sizes, but
|
|
downstream users won't. Normalize this away.
|
|
"""
|
|
if not isinstance(index, sympy.Expr):
|
|
# index can be an int
|
|
return
|
|
free_symbols = index.free_symbols
|
|
while var_names and var_names[-1] not in free_symbols:
|
|
var_names.pop()
|
|
sizes.pop()
|
|
|
|
@classmethod
|
|
def _normalize(
|
|
cls, index: sympy.Expr, var_ranges: VarRanges
|
|
) -> tuple[sympy.Expr, tuple[sympy.Symbol, ...], tuple[sympy.Expr, ...]]:
|
|
# Try to further simplify the indexes even if simplify_loops didn't
|
|
# convert it to the simplest form because of the interference from
|
|
# different indexing formulas.
|
|
index_vars = [*var_ranges.keys()]
|
|
sizes = tuple(var_ranges.values()) # type: ignore[assignment]
|
|
new_sizes, reindex, _prune = V.graph.sizevars._simplify_loops(
|
|
index_vars,
|
|
sizes,
|
|
index_prevent_reordering([index], index_vars, sizes),
|
|
)
|
|
|
|
# assign new variables each dimension to deal with numbering mismatches
|
|
# d0, d1, d2 could become d0, d2 -- which won't match d0, d1
|
|
new_vars, add_var = var_builder(canonicalization_prefix())
|
|
replacement = dict(zip(index_vars, reindex([add_var(x) for x in new_sizes])))
|
|
index = sympy_subs(sympy.expand(index), replacement)
|
|
|
|
new_vars = [*new_vars.keys()]
|
|
new_sizes = [*new_sizes]
|
|
cls.drop_unused_symbols(index, new_vars, new_sizes)
|
|
return index, tuple(new_vars), tuple(new_sizes) # type: ignore[arg-type]
|
|
|
|
def canonicalize(
|
|
self, index: sympy.Expr
|
|
) -> tuple[sympy.Expr, tuple[sympy.Symbol, ...], tuple[sympy.Expr, ...]]:
|
|
if not self._should_normalize:
|
|
sizes = [V.graph.sizevars.simplify(x) for x in self._var_ranges.values()]
|
|
var_names = [k for k, v in zip(self._var_ranges.keys(), sizes) if v != 1]
|
|
sizes = [v for v in sizes if v != 1]
|
|
|
|
self.drop_unused_symbols(index, var_names, sizes)
|
|
|
|
return index, tuple(var_names), tuple(sizes) # type: ignore[return-value, arg-type]
|
|
var_ranges = {
|
|
k: V.graph.sizevars.simplify(v)
|
|
for k, v in self._var_ranges.items()
|
|
# TODO(jansel): explore this further normalization
|
|
# if k in free_symbols
|
|
}
|
|
return self._normalize(index, var_ranges)
|
|
|
|
def load(self, name: str, index: sympy.Expr) -> str:
|
|
self._reads.add(MemoryDep(name, *self.canonicalize(index)))
|
|
return f"load({name}, {sympy_str(index)})"
|
|
|
|
def load_seed(self, name: str, index: int) -> str:
|
|
assert isinstance(index, int)
|
|
return self.load(name, sympy.Integer(index))
|
|
|
|
def store(
|
|
self, name: str, index: sympy.Expr, value: str, mode: Optional[str] = None
|
|
) -> str:
|
|
self._writes.add(MemoryDep(name, *self.canonicalize(index), mode=mode))
|
|
return f"store({name}, {sympy_str(index)}, {value}, {mode})"
|
|
|
|
def store_reduction(self, name: str, index: sympy.Expr, value: str) -> str:
|
|
return self.store(name, index, f"store_reduction({value})")
|
|
|
|
def index_expr(self, index: sympy.Expr, dtype: Optional[torch.dtype]) -> str:
|
|
self._index_exprs.add(IndexExprDep(*self.canonicalize(index)))
|
|
return f"index_expr({sympy_str(index)}, {dtype})"
|
|
|
|
def bucketize(
|
|
self,
|
|
values: T,
|
|
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
|
|
boundary_indices: T,
|
|
indexing_dtype: torch.dtype,
|
|
right: bool,
|
|
sorter: Optional[tuple[str, sympy.Expr]] = None,
|
|
sorter_indices: Optional[T] = None,
|
|
) -> None:
|
|
"""Records the names of the buffers that bucketize will read from."""
|
|
self._reads.add(StarDep(boundaries[0]))
|
|
if sorter is not None:
|
|
self._reads.add(StarDep(sorter[0]))
|
|
|
|
|
|
class RecordLoadStore(V.KernelFormatterHandler): # type: ignore[name-defined]
|
|
def __init__(self, var_ranges: VarRanges, normalize: bool) -> None:
|
|
parent_handler = _RecordLoadStoreInner(
|
|
var_ranges=var_ranges, normalize=normalize
|
|
)
|
|
super().__init__(parent_handler=parent_handler)
|
|
|
|
|
|
# TODO: check call sites
|
|
def var_builder(prefix: str) -> tuple[VarRanges, Callable[[sympy.Expr], sympy.Symbol]]:
|
|
cnt = itertools.count()
|
|
var_ranges: VarRanges = {}
|
|
|
|
def add_var(length: sympy.Expr) -> sympy.Symbol:
|
|
v = sympy_index_symbol(f"{prefix}{next(cnt)}")
|
|
var_ranges[v] = length
|
|
return v
|
|
|
|
return var_ranges, add_var
|
|
|
|
|
|
def index_vars_no_squeeze(
|
|
*argsizes: Sequence[sympy.Expr], prefix: str
|
|
) -> tuple[list[list[sympy.Symbol]], VarRanges]:
|
|
var_ranges, add_var = var_builder(prefix)
|
|
args: list[list[sympy.Symbol]] = [list(map(add_var, size)) for size in argsizes]
|
|
return args, var_ranges
|
|
|
|
|
|
def index_vars_squeeze(
|
|
*argsizes: Sequence[sympy.Expr], prefix: str = "d"
|
|
) -> tuple[list[list[sympy.Expr]], VarRanges]:
|
|
from .ir import SqueezeView
|
|
|
|
var_ranges, add_var = var_builder(prefix)
|
|
args: list[list[sympy.Expr]] = []
|
|
new_sizes: list[list[sympy.Expr]] = []
|
|
for size in argsizes:
|
|
new_size, reindex = SqueezeView.squeezer(size)
|
|
new_sizes.append(new_size)
|
|
args.append(reindex(list(map(add_var, new_size))))
|
|
return args, var_ranges
|
|
|
|
|
|
def extract_read_writes(
|
|
fn: Callable[..., Any],
|
|
*argsizes: Sequence[sympy.Expr],
|
|
normalize: bool = False,
|
|
prefix: str = "d",
|
|
hidden_args: Sequence[list[sympy.Expr]] = (),
|
|
) -> ReadWrites:
|
|
args, var_ranges = index_vars_squeeze(*argsizes, prefix=prefix)
|
|
|
|
from .loop_body import LoopBody
|
|
|
|
if isinstance(fn, LoopBody):
|
|
inner = extract_loop_body_with_args(
|
|
fn, [*args, *hidden_args], var_ranges, normalize
|
|
)
|
|
else:
|
|
# Slow path tracing the function
|
|
rw = RecordLoadStore(var_ranges, normalize=normalize)
|
|
with V.set_ops_handler(rw):
|
|
fn(*args, *hidden_args)
|
|
inner = rw.parent_handler
|
|
|
|
if normalize:
|
|
range_vars = [] # Number of vars could differ due to normalization
|
|
else:
|
|
range_vars = [*itertools.chain.from_iterable(args)]
|
|
|
|
return ReadWrites(
|
|
OrderedSet(inner._reads),
|
|
OrderedSet(inner._writes),
|
|
inner._index_exprs,
|
|
range_vars,
|
|
var_ranges,
|
|
)
|
|
|
|
|
|
def extract_loop_body_with_args(
|
|
fn: Any,
|
|
args: list[list[sympy.Expr]],
|
|
var_ranges: VarRanges,
|
|
normalize: bool = False,
|
|
) -> _RecordLoadStoreInner:
|
|
from .loop_body import MemoryUsageType
|
|
|
|
# Fast path to avoid tracing when we already have a LoopBody
|
|
inner = _RecordLoadStoreInner(var_ranges=var_ranges, normalize=normalize)
|
|
name_to_index = fn.indexing_from_args(args)
|
|
if fn.indirect_vars:
|
|
# mimic the `tmpX` naming tracing gives us
|
|
repl = {v: make_symbol(SymT.TMP, i) for i, v in enumerate(fn.indirect_vars)}
|
|
name_to_index = {k: sympy_subs(v, repl) for k, v in name_to_index.items()} # type: ignore[arg-type]
|
|
for entry in fn.memory_usage[MemoryUsageType.LOAD]:
|
|
inner.load(entry.buffer_name, name_to_index[entry.index_name]) # type: ignore[arg-type]
|
|
for entry in fn.memory_usage[MemoryUsageType.LOAD_SEED]:
|
|
inner.load_seed(entry.buffer_name, int(name_to_index[entry.index_name])) # type: ignore[arg-type]
|
|
for entry in fn.memory_usage[MemoryUsageType.STORE]:
|
|
inner.store(
|
|
entry.buffer_name,
|
|
name_to_index[entry.index_name],
|
|
None, # type: ignore[arg-type]
|
|
entry.mode,
|
|
)
|
|
for entry in fn.memory_usage[MemoryUsageType.STORE_REDUCTION]:
|
|
inner.store_reduction(
|
|
entry.buffer_name,
|
|
name_to_index[entry.index_name],
|
|
None, # type: ignore[arg-type]
|
|
)
|
|
for entry in fn.memory_usage[MemoryUsageType.INDEX_EXPR]:
|
|
inner.index_expr(name_to_index[entry.index_name], None)
|
|
for entry in fn.memory_usage[MemoryUsageType.BUCKETIZE]:
|
|
# All that matters is that we record the buffer name, so place it in the
|
|
# "boundaries" name position to ensure that it's recorded.
|
|
inner.bucketize(
|
|
None,
|
|
(entry.buffer_name, None, None, None),
|
|
None,
|
|
None, # type: ignore[arg-type]
|
|
None, # type: ignore[arg-type]
|
|
)
|
|
# fn.memory_usage[MemoryUsageType.CHECK_BOUNDS] intentionally skipped
|
|
return inner
|
|
|
|
|
|
def extract_input_node_reduction_ranges(
|
|
input_node: "torch._inductor.ir.IRNode",
|
|
) -> tuple[Optional[list[sympy.Expr]], Optional[list[sympy.Expr]]]:
|
|
"""
|
|
Returns the size and reduction size of all inputs, if the sizes and reduction_sizes (if exist) are all the same.
|
|
It's possible that a node has multiple inputs, some are Reduction nodes and others are Pointwise nodes.
|
|
In this case, reduction_sizes of the Reduction nodes need to be the same.
|
|
Otherwise returns (None, None).
|
|
"""
|
|
|
|
from .ir import ComputedBuffer, ExternKernel, Loops
|
|
|
|
size: Optional[list[sympy.Expr]]
|
|
reduction_size: Optional[list[sympy.Expr]]
|
|
|
|
if isinstance(input_node.get_defining_op(), ComputedBuffer):
|
|
# Input node has already been realized. Return its size and reduction_size.
|
|
size = [*input_node.get_size()]
|
|
reduction_size = [*input_node.get_reduction_size()]
|
|
if len(reduction_size) > 0:
|
|
return (size, reduction_size)
|
|
else:
|
|
return (None, None)
|
|
|
|
if not isinstance(input_node.data.data, Loops): # type: ignore[attr-defined]
|
|
# Other IRNodes do not have reduction_ranges.
|
|
return (None, None)
|
|
|
|
# There is one issue: what if there are views / permutations between the input node and its dependent realized nodes?
|
|
# The current method still uses reduction ranges from the dependent realized node, which is not ideal.
|
|
# Is there a way to check whether there are permutations inbetween?
|
|
reads = input_node.get_reads()
|
|
reduction_size: Optional[list[sympy.Expr]] = None
|
|
size: Optional[list[sympy.Expr]] = None
|
|
while reduction_size is None and len(reads) > 0:
|
|
seen: OrderedSet[str] = OrderedSet()
|
|
new_reads: list[Dep] = []
|
|
for read in reads:
|
|
if not isinstance(read, MemoryDep):
|
|
continue
|
|
if read.name in seen:
|
|
continue
|
|
seen.add(read.name)
|
|
buffer = V.graph.try_get_buffer(read.name)
|
|
if buffer is None:
|
|
continue
|
|
op = buffer.get_defining_op()
|
|
if op is None or isinstance(op, ExternKernel):
|
|
continue
|
|
|
|
if isinstance(op, ComputedBuffer) and len(op.get_reduction_size()) > 0:
|
|
if reduction_size is None:
|
|
reduction_size = [*op.get_reduction_size()]
|
|
size = [*op.get_size()]
|
|
elif reduction_size != [*op.get_reduction_size()] or size != [
|
|
*op.get_size()
|
|
]:
|
|
return (None, None)
|
|
else:
|
|
new_reads.extend(op.get_reads())
|
|
if reads == new_reads:
|
|
return (size, reduction_size)
|
|
else:
|
|
reads = OrderedSet(new_reads)
|
|
return (size, reduction_size)
|
|
|
|
|
|
def canonicalization_prefix() -> str:
|
|
return "c"
|
|
|
|
|
|
# ops handler which computes all the free symbols for an IR
|
|
class FreeSymbolsOpsHandler(DefaultHandler):
|
|
symbols: OrderedSet[sympy.Symbol]
|
|
|
|
def __init__(self, unbacked_only: bool = True) -> None:
|
|
self.symbols = OrderedSet()
|
|
self.get_symbols = free_unbacked_symbols if unbacked_only else free_symbols
|
|
|
|
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
|
|
for a in itertools.chain(args, kwargs.values()):
|
|
if isinstance(a, (sympy.Expr, sympy.logic.boolalg.Boolean)):
|
|
self.symbols |= self.get_symbols(a)
|
|
|
|
def indirect_indexing(
|
|
self,
|
|
index_var: Any,
|
|
size: Union[int, sympy.Expr],
|
|
check: bool = True,
|
|
wrap_neg: bool = True,
|
|
) -> sympy.Symbol:
|
|
assert not isinstance(index_var, (sympy.Expr, sympy.logic.boolalg.Boolean))
|
|
self.symbols |= self.get_symbols(size)
|
|
return sympy_index_symbol(f"({str(index_var)})")
|
|
|
|
def frexp(self, x: Any) -> tuple[None, ...]:
|
|
return (None,) * 2
|
|
|
|
def scan(
|
|
self, dtypes: Any, combine_fn: Any, values: Sequence[Any]
|
|
) -> tuple[None, ...]:
|
|
return (None,) * len(values)
|
|
|
|
def sort(
|
|
self, dtypes: Any, values: Sequence[Any], stable: Any, descending: Any
|
|
) -> tuple[None, ...]:
|
|
return (None,) * len(values)
|
|
|
|
def reduction(
|
|
self,
|
|
dtype: torch.dtype,
|
|
src_dtype: torch.dtype,
|
|
reduction_type: ReductionType,
|
|
value: Union[None, tuple[None, ...]],
|
|
) -> Union[None, tuple[None, ...]]:
|
|
num_values = reduction_num_outputs(reduction_type)
|
|
return (None,) * num_values if num_values > 1 else None
|
|
|
|
def masked(self, mask: Any, body: Callable[..., Any], other: Any) -> None:
|
|
assert callable(body), "masked body must always be callable."
|
|
# The body can make additional calls, for e.g. ops.indirect_indexing
|
|
body()
|
|
|
|
|
|
def extract_free_symbols(
|
|
fn: Callable[..., Any],
|
|
index: Sequence[sympy.Expr],
|
|
rindex: Optional[Sequence[sympy.Expr]] = None,
|
|
unbacked_only: bool = True,
|
|
) -> OrderedSet[sympy.Symbol]:
|
|
from .ir import FlexibleLayout
|
|
|
|
args = [index, rindex] if rindex is not None else [index]
|
|
handler = FreeSymbolsOpsHandler(unbacked_only)
|
|
# NB: I cargo culted the allow_indexing patch here, I don't understand why
|
|
# people do this all over
|
|
with (
|
|
V.set_ops_handler(handler),
|
|
patch.object(FlexibleLayout, "allow_indexing", True),
|
|
):
|
|
fn(*args)
|
|
return handler.symbols
|