pytorch/test/functorch/common_utils.py
IvanKobzarev 4439255148 [aotd] Support saved tensors hooks in aot_autograd (#150032)
https://github.com/pytorch/pytorch/issues/148222

Goal:

At the moment autograd saved tensors hooks are run in eager after compiled forward.
They are executed at the same time for all saved tensors.
Hooks can be used to reduce amout of memory used for saved tensors, doing quantization or offloading to cpu.
This is suboptimal for optimization of peak memory.
Better solution will be to put the hooks in the graph, as close as possible to the last usage of the tensor.

To get user specified autograd saved tensors hooks in the graph.

Logic:

UX:
If user specifies with torch.autograd.graph.saved_tensors_hooks(pack_gm, unpack_gm).
Where pack_gm and unpack_gm are torch.fx.GraphModule.
Then AotAutograd will retrace those graph modules, doing decompositions and functionalization in aot_autograd, inlining the result graphs in forward epilogue and backward prologue.

User may want to use control logic in the hooks, for example applying quantization only for specific dtypes and sizes.

This is also possible, user can put it into torch.fx.wrap function and use symbolic trace to make a GraphModule.

In that case AotAutograd cahing will work only in case when user explicitly set to the torch.fx.wrap call_function node "user_cache_hash" metadata.

If this metadata set - then aot_autograd cache can use saved cache artifact.
If metadata is not set - then cache is bypassed.

Dynamo:
Dynamo traces pack and unpack hooks and installs them as subgraph and explicitly adds to the output_graph. (As those subgraphs are not used and will not be copied in the result by default).

The complexity here is that at this moment we do not have example of inputs for the hooks.
We trace  pack_hook with some Tensor from the inputs.
The result subgraphs are added to the hashing of AotAutograd Cache.

In AotAutograd we retrace the graph with the true saved tensors coming from partitioner.

Backwards Compatibility:
As current hooks are executed in eager mode and not all of them will be traceable - we only try to put in the graph hooks, explicitly marked by user with annotation (@_inlineable_saved_tensors_hooks).
For other hooks or if compiled autograd is enabled - keep the same logic.

Recompilations:
Hooks are guarded with lambda guard matching function id to cause recompilation if user reruns compiled function.

Aot_autograd:
After partitioner prepared forward and backward module - we trace prepared at Dynamo graphs for pack and unpack hooks and inline them in epilogue of forward and prologue of backward. Forward outputs and backward inputs are changed, transparently for user.

We do not try to put it close the last usage etc., relying on inductor to do this optimization.

```
INFO: TRACED GRAPH
 ===== Forward graph pre saved_tensors_hooks inlining 3 =====
 /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
    def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
        add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1);  primals_3 = None

         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
        view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2])
        return (view, add, primals_1, primals_2)

INFO: TRACED GRAPH
 ===== Backward graph pre saved_tensors_hooks inlining 3 =====
 /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
    def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
        add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1);  primals_3 = None

         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
        view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2])
        return (view, add, primals_1, primals_2)

INFO: TRACED GRAPH
 ===== saved_tensors_pack_hook add 3 =====
 /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class pack_float8(torch.nn.Module):
    def forward(self, x_1: "f32[s0, s1][s1, 1]cuda:0"):
        # No stacktrace found for following nodes
        _to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(x_1, dtype = torch.float8_e4m3fn);  x_1 = None
        return (torch.float32, _to_copy)

INFO: TRACED GRAPH
 ===== saved_tensors_unpack_hook add 3 =====
 <eval_with_key>.22 from /data/users/ivankobzarev/a/pytorch/torch/fx/experimental/proxy_tensor.py:1225 in wrapped class pack_float8(torch.nn.Module):
    def forward(self, x_1: "f32[s0, s1][s1, 1]cuda:0"):
        # No stacktrace found for following nodes
        _to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(x_1, dtype = torch.float8_e4m3fn);  x_1 = None
        return (torch.float32, _to_copy)

INFO: TRACED GRAPH
 ===== Forward graph 3 =====
 /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
    def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", primals_3: "f32[s0, s1][s1, 1]cuda:0"):
         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6660 in simple_fn, code: x = x + 1
        add: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(primals_3, 1);  primals_3 = None

        # No stacktrace found for following nodes
        _to_copy: "f8e4m3fn[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(add, dtype = torch.float8_e4m3fn)

         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
        view: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.view.default(add, [primals_1, primals_2]);  add = None
        return (view, _to_copy, primals_1, primals_2)

INFO: TRACED GRAPH
 ===== Backward graph 3 =====
 <eval_with_key>.21 class GraphModule(torch.nn.Module):
    def forward(self, primals_1: "Sym(s0)", primals_2: "Sym(s1)", add_packed_2: "f8e4m3fn[s0, s1][s1, 1]cuda:0", tangents_1: "f32[s0, s1][s1, 1]cuda:0"):
        # No stacktrace found for following nodes
        _to_copy: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten._to_copy.default(add_packed_2, dtype = torch.float32);  add_packed_2 = None

         # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6661 in simple_fn, code: x = SAF.apply(x)
        add_7: "f32[s0, s1][s1, 1]cuda:0" = torch.ops.aten.add.Tensor(tangents_1, _to_copy);  tangents_1 = _to_copy = None
        return (None, None, add_7)

```

Differential Revision: [D72187044](https://our.internmc.facebook.com/intern/diff/D72187044)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150032
Approved by: https://github.com/bdhirsh
2025-05-22 14:09:38 +00:00

643 lines
20 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import os
import unittest
from collections import namedtuple
from functorch_additional_op_db import additional_op_db
import torch
import torch.utils._pytree as pytree
from functorch import vmap
from torch.testing._internal.autograd_function_db import autograd_function_db
from torch.testing._internal.common_device_type import toleranceOverride
from torch.testing._internal.common_methods_invocations import DecorateInfo, op_db
from torch.testing._internal.common_modules import module_db
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.opinfo.core import sample_skips_and_xfails, XFailRule
IS_FBCODE = os.getenv("FUNCTORCH_TEST_FBCODE") == "1"
def loop(op, in_dims, out_dim, batch_size, *batched_args, **kwarg_values):
outs = []
out_spec = None
for idx in range(batch_size):
flat_args, args_spec = pytree.tree_flatten(batched_args)
flat_dims, dims_spec = pytree.tree_flatten(in_dims)
assert args_spec == dims_spec
new_args = [
a.select(in_dim, idx) if in_dim is not None else a
for a, in_dim in zip(flat_args, flat_dims)
]
out = op(*pytree.tree_unflatten(new_args, args_spec), **kwarg_values)
flat_out, out_spec = pytree.tree_flatten(out)
outs.append(flat_out)
# use the same out_dim for all outputs
if isinstance(out_dim, int):
flat_out_dim = [out_dim for _ in flat_out]
else:
flat_out_dim, _ = pytree.tree_flatten(out_dim)
outs = zip(*outs)
result = []
for i, out_lst in enumerate(outs):
if flat_out_dim[i] is not None:
if not all(isinstance(x, torch.Tensor) for x in out_lst):
raise ValueError(
f"vmap `{op}` must only return "
"Tensors. Did you mean to set out_dims= to None for output?"
)
result.append(torch.stack(out_lst))
else:
# not batched over, result should be the same for all batches
result.append(out_lst[0])
return pytree.tree_unflatten(result, out_spec)
# Like loop helper function but for 2 levels of vmap. If we need more levels than this, probably possible
# to generalize the loops function but it seemed too complicated for this
def loop2(
op,
in_dims1,
in_dims2,
out_dim1,
out_dim2,
batch_size1,
batch_size2,
*batched_args,
**kwarg_values,
):
outs = []
flat_args, args_spec = pytree.tree_flatten(batched_args)
flat_dims1, dims_spec1 = pytree.tree_flatten(in_dims1)
flat_dims2, dims_spec2 = pytree.tree_flatten(in_dims2)
assert args_spec == dims_spec1
assert args_spec == dims_spec2
assert len(flat_dims1) == len(flat_dims2)
for idx1 in range(batch_size1):
out_split = []
arg_split = [
a.select(in_dim1, idx1) if in_dim1 is not None else a
for a, in_dim1 in zip(flat_args, flat_dims1)
]
for idx2 in range(batch_size2):
new_args = [
a.select(in_dim, idx2) if in_dim is not None else a
for a, in_dim in zip(arg_split, flat_dims2)
]
out = op(*pytree.tree_unflatten(new_args, args_spec), **kwarg_values)
out_split.append(out)
outs.append(out_split)
loop_out = []
for out_split in outs:
if isinstance(out_split[0], torch.Tensor):
loop_out.append(torch.stack(out_split, out_dim1))
else:
new_out = []
for idx in range(len(out_split[0])):
new_out.append(torch.stack([i[idx] for i in out_split], out_dim1))
loop_out.append(new_out)
new_out = []
if isinstance(loop_out, torch.Tensor):
new_out = torch.stack(loop_out, out_dim2)
else:
for idx in range(len(loop_out[0])):
new_out.append(torch.stack([i[idx] for i in loop_out], out_dim2))
return new_out
def is_valid_inplace_sample_input(sample_input, op, inplace_variant):
if inplace_variant is None:
return False
if sample_input.broadcasts_input:
return False
if not isinstance(sample_input.input, torch.Tensor):
return False
# Check if input's dtype matches the output's dtype
args = (sample_input.input,) + sample_input.args
kwargs = sample_input.kwargs
output_dtype = op(*args, **kwargs).dtype
return sample_input.input.dtype == output_dtype
# This is kind of dangerous, please think carefully before using it.
# Known risks:
# - the return better not be mutated so it's best to return immutable types
# (e.g. prefer tuples to list)
# - Don't hash tensors in a global context, that'll keep them around forever
def memoize(fn):
memo = {}
def wrapped(*args):
if args not in memo:
memo[args] = fn(*args)
return memo[args]
return wrapped
# NB: This is O(2 ** num_tensors).
# num_tensors ranges from 1 to 10, with 2-4 being most common.
# Try not to extravagate it if you're modifying it.
@memoize
def get_bdim_choices(num_tensors):
choices = []
# full of zeros
choices.append((0,) * num_tensors)
# All permutations of (-1, None)
options = (-1, None)
choices.extend(itertools.product(options, repeat=num_tensors))
assert choices[-1] == (None,) * num_tensors
return tuple(choices[:-1])
# NB: This is O(2 ** num_tensors).
# num_tensors ranges from 1 to 10, with 2-4 being most common.
# Try not to extravagate it if you're modifying it.
def get_bdim_choices_batch_norm(
num_tensors, _, running_mean=None, running_var=None, *args
):
choices = []
options = (-1, None)
# instance norm turns these into unbatched 0 tensors, so we cannot batch the input if either is not specified
if running_mean is None or running_var is None:
choices.append((None,) + (0,) * (num_tensors - 1))
for choice in itertools.product(options, repeat=num_tensors - 1):
choices.append((None,) + choice)
else:
# running_mean and running_var are specified as tensors. Batch norm doesn't work if the input is batched but
# running_mean/var are unbatched, so this tests all other cases
choices.append((0,) * num_tensors)
for choice in itertools.product(options, repeat=num_tensors):
input_bdim = choice[0]
running_mean_bdim = choice[1]
running_var_bdim = choice[2]
if input_bdim and (not running_mean_bdim or not running_var_bdim):
continue
choices.append(choice)
assert choices[-1] == (None,) * num_tensors
return tuple(choices[:-1])
def add_batch_dim(arg, bdim, batch_size=3):
assert bdim == 0 or bdim == -1
assert isinstance(arg, torch.Tensor)
if bdim == 0:
shape = [1] * len(arg.shape)
shape.insert(bdim, batch_size)
return (arg.repeat(shape), bdim)
if bdim == -1:
arg = arg.unsqueeze(-1).expand(*arg.shape, batch_size).contiguous()
return (arg, bdim)
def construct_in_dims(bdim_choice_for_tensors, is_tensors):
result = []
bdim = iter(bdim_choice_for_tensors)
for is_tensor in is_tensors:
if not is_tensor:
result.append(None)
continue
result.append(next(bdim))
return tuple(result)
def is_batch_norm_training(op_name, kwarg_values):
batch_norm_fns = (
"nn.functional.batch_norm",
"nn.functional.instance_norm",
) # instance norm calls batch norm
if op_name not in batch_norm_fns:
return False
# batch norm and instance norm require the value to be a plain bool
default_training = (
op_name == "nn.functional.instance_norm"
) # instance norm defaults to training, batch norm doesn't
is_training = tuple(
arg for arg in tuple(kwarg_values.values()) if isinstance(arg, bool)
)
if len(is_training) == 0:
return default_training
else:
assert len(is_training) == 1
return is_training[0]
def generate_vmap_inputs(
arg_values, kwarg_values, is_batch_norm_and_training=False, batch_size=2
):
flat_args, arg_spec = pytree.tree_flatten(tuple(arg_values))
is_tensors = [isinstance(a, torch.Tensor) for a in flat_args]
num_tensors = sum(is_tensors)
# For Batch Norm, if there's only an input, we can't
# batch it since running_mean/var will be seen as unbatched tensors
if num_tensors == 1 and is_batch_norm_and_training:
return
bdim_choices = (
get_bdim_choices_batch_norm(num_tensors, *arg_values)
if is_batch_norm_and_training
else get_bdim_choices(num_tensors)
)
@memoize
def get_batched_arg(arg, bdim):
assert isinstance(arg, torch.Tensor)
assert bdim is not None
result, _ = add_batch_dim(arg, bdim, batch_size)
return result
for bdim_choice in bdim_choices:
flat_in_dims = construct_in_dims(bdim_choice, is_tensors)
flat_batched_args = tuple(
arg if in_dim is None else get_batched_arg(arg, in_dim)
for arg, in_dim in zip(flat_args, flat_in_dims)
)
batched_args = pytree.tree_unflatten(flat_batched_args, arg_spec)
in_dims = pytree.tree_unflatten(flat_in_dims, arg_spec)
yield batched_args, in_dims, kwarg_values
def clone_if_tensor(x):
if isinstance(x, torch.Tensor):
return x.clone()
return x
# Helper function to compare output of `vmap` against the
# `for-loop` version.
def _compute_quantities_for_vmap_test(
op,
orig_batched_args,
orig_kwarg_values,
in_dims,
out_dim,
batch_size,
compute_loop_out=True,
clone_inputs=False,
):
def maybe_clone_inputs():
if clone_inputs:
batched_args = pytree.tree_map(clone_if_tensor, orig_batched_args)
kwarg_values = pytree.tree_map(clone_if_tensor, orig_kwarg_values)
return batched_args, kwarg_values
return orig_batched_args, orig_kwarg_values
batched_args, kwarg_values = maybe_clone_inputs()
if compute_loop_out:
loop_out = loop(op, in_dims, out_dim, batch_size, *batched_args, **kwarg_values)
else:
loop_out = None
# Used for debugging the resulting operations
# from functorch import make_fx
# def f(a):
# return op(a)
# t = make_fx(vmap(f, in_dims=in_dims, out_dims=out_dim))(*batched_args, **kwarg_values)
# print(in_dims, [arg.shape for arg in batched_args], kwarg_values)
batched_args, kwarg_values = maybe_clone_inputs()
batched_out = vmap(op, in_dims=in_dims, out_dims=out_dim)(
*batched_args, **kwarg_values
)
# Tests case where we dispatch to a batching rule with no bdims
# This should be handled by autogenerated plumbing. For vmap support
# added via a manual plumbing you may need to handle this specially.
def add_bdim_if_tensor(x):
if isinstance(x, torch.Tensor):
return x.unsqueeze(1)
return x
def f(dummy, *args, **kwargs):
return op(*args, **kwargs)
dummy = torch.ones(batch_size, 1)
vmapvmap_expected = pytree.tree_map(add_bdim_if_tensor, batched_out)
inner_in_dims = (0,) + pytree.tree_map(lambda x: None, in_dims)
outer_in_dims = (0,) + in_dims
batched_args, kwarg_values = maybe_clone_inputs()
vmapvmap_output = vmap(
vmap(f, inner_in_dims, out_dims=out_dim), outer_in_dims, out_dims=out_dim
)(dummy, *batched_args, **kwarg_values)
yield (batched_out, loop_out, vmapvmap_output, vmapvmap_expected)
# Function with more friendly return types
# compared to `_compute_quantities_for_vmap_test`
def compute_quantities_for_vmap_test(
op,
orig_batched_args,
orig_kwarg_values,
in_dims,
out_dim=0,
batch_size=2,
compute_loop_out=True,
clone_inputs=False,
):
for quantities in _compute_quantities_for_vmap_test(
op,
orig_batched_args,
orig_kwarg_values,
in_dims,
out_dim,
batch_size,
compute_loop_out,
clone_inputs,
):
yield (quantities[0], quantities[1])
yield (quantities[2], quantities[3])
def get_fallback_and_vmap_exhaustive(
op,
arg_values,
kwarg_values,
is_batch_norm_and_training=False,
compute_loop_out=True,
):
out_dim = 0
batch_size = 2
def make_batched(t):
if isinstance(t, torch.Tensor):
shape = list(t.shape)
shape.insert(out_dim, batch_size)
return t.expand(*shape)
return t
# Inputs generated by `generate_vmap_inputs` just copy/expand the unbatched inputs
# over the batched dimension. Thus we can compute the expected value once and just
# expand it based on the `out_dim` and `batch_size`.
expected_unbatched = op(*arg_values, **kwarg_values)
expected_batched = pytree.tree_map(make_batched, expected_unbatched)
generator = generate_vmap_inputs(
arg_values, kwarg_values, is_batch_norm_and_training
)
for batched_args, in_dims, kwarg_values in generator:
for quantities in _compute_quantities_for_vmap_test(
op,
batched_args,
kwarg_values,
in_dims,
out_dim,
batch_size,
compute_loop_out=False,
):
assert quantities[1] is None
yield (quantities[0], expected_batched)
yield (quantities[2], quantities[3])
def opinfo_in_dict(opinfo, d):
return (opinfo.name in d) or (f"{opinfo.name}.{opinfo.variant_test_name}" in d)
DecorateMeta = namedtuple(
"DecorateMeta",
[
"op_name",
"variant_name",
"decorator",
"device_type",
"dtypes",
],
)
def decorate(
op_name, variant_name="", *, decorator=None, device_type=None, dtypes=None
):
assert decorator is not None
return DecorateMeta(
op_name=op_name,
variant_name=variant_name,
decorator=decorator,
device_type=device_type,
dtypes=dtypes,
)
def xfail(op_name, variant_name="", *, device_type=None, dtypes=None):
return decorate(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.expectedFailure,
device_type=device_type,
dtypes=dtypes,
)
# fail_fn should be a callable that accepts a single SampleInput and returns True if failure
# is expected
def xfailIf(op_name, fail_fn, variant_name="", *, device_type=None, dtypes=None):
return decorate(
op_name=op_name,
variant_name=variant_name,
decorator=sample_skips_and_xfails(
[
XFailRule(
# op matching is already handled by DecorateMeta
op_match_fn=lambda device, op: True,
# device matching is already handled by DecorateMeta
sample_match_fn=lambda device, sample: fail_fn(sample),
)
]
),
device_type=device_type,
dtypes=dtypes,
)
def skip(op_name, variant_name="", *, device_type=None, dtypes=None):
return decorate(
op_name=op_name,
variant_name=variant_name,
decorator=unittest.skip("Skipped!"),
device_type=device_type,
dtypes=dtypes,
)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db + additional_op_db + autograd_function_db + custom_op_db
for decorate_meta in to_skip:
matching_opinfos = [
o
for o in all_opinfos
if o.name == decorate_meta.op_name
and o.variant_test_name == decorate_meta.variant_name
]
assert len(matching_opinfos) > 0, f"Couldn't find OpInfo for {decorate_meta}"
assert len(matching_opinfos) == 1, (
"OpInfos should be uniquely determined by their (name, variant_name). "
f"Got more than one result for ({decorate_meta.op_name}, {decorate_meta.variant_name})"
)
opinfo = matching_opinfos[0]
decorators = list(opinfo.decorators)
new_decorator = DecorateInfo(
decorate_meta.decorator,
test_case_name,
base_test_name,
device_type=decorate_meta.device_type,
dtypes=decorate_meta.dtypes,
)
decorators.append(new_decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
def decorateForModules(decorator, module_classes, device_type=None, dtypes=None):
# This decorator doesn't modify fn in any way
def wrapped(
fn,
module_classes=module_classes,
decorator=decorator,
device_type=device_type,
dtypes=dtypes,
):
name_parts = fn.__qualname__.split(".")
assert (
len(name_parts) == 2
), "Decorator only applies to a test function of a test class"
test_case_name, base_test_name = name_parts
for module_cls in module_classes:
matching_module_infos = [m for m in module_db if m.module_cls == module_cls]
assert (
len(matching_module_infos) == 1
), f"Couldn't find single ModuleInfo for {module_cls}"
module_info = matching_module_infos[0]
decorators = list(module_info.decorators)
new_decorator = DecorateInfo(
decorator,
test_case_name,
base_test_name,
device_type=device_type,
dtypes=dtypes,
)
decorators.append(new_decorator)
module_info.decorators = tuple(decorators)
return fn
return wrapped
def expectedFailureIf(condition):
def decorator(fn):
if condition:
return unittest.expectedFailure(fn)
return fn
return decorator
def tol2(op_name, variant_name, override_dct, *, device_type=None):
return (op_name, variant_name, override_dct, device_type)
def tol1(op_name, override_dct, *, device_type=None):
return tol2(op_name, "", override_dct, device_type=device_type)
def opsToleranceOverride(test_case_name, base_test_name, overrides):
all_opinfos = op_db + additional_op_db
for override in overrides:
op_name, variant_name, override, device_type = override
matching_opinfos = [
o
for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name
]
assert len(matching_opinfos) == 1, f"Couldn't find OpInfo for {override}"
opinfo = matching_opinfos[0]
decorators = list(opinfo.decorators)
decorators.append(
DecorateInfo(
toleranceOverride(override),
test_case_name,
base_test_name,
device_type=device_type,
)
)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
class DisableVmapFallback:
def __enter__(self):
self.prev_state = torch._C._functorch._is_vmap_fallback_enabled()
torch._C._functorch._set_vmap_fallback_enabled(False)
def __exit__(self, *ignored):
torch._C._functorch._set_vmap_fallback_enabled(self.prev_state)
def check_vmap_fallback(test_case, thunk, opinfo, dry_run=False):
try:
with DisableVmapFallback():
thunk()
except Exception:
if not dry_run:
raise
if opinfo.variant_test_name:
print(f"xfail('{opinfo.name}', '{opinfo.variant_test_name}'),")
else:
print(f"xfail('{opinfo.name}'),")
def saved_tensors_hooks_to_gm(
pack_fn, unpack_fn, pack_cache_hash, unpack_cache_hash, symbolic_tracing=True
):
if symbolic_tracing:
pack_gm = torch.fx.symbolic_trace(pack_fn)
unpack_gm = torch.fx.symbolic_trace(unpack_fn)
else:
from torch.functorch import make_fx
inp = torch.randn(2, 3)
torch._dynamo.mark_dynamic(inp, 0)
torch._dynamo.mark_dynamic(inp, 1)
pack_out = pack_fn(inp)
pack_gm = make_fx(pack_fn)(inp)
unpack_gm = make_fx(unpack_fn)(pack_out)
def set_manual_hash(g, manual_hash):
node = next(iter(g.nodes))
node.meta["user_cache_hash"] = manual_hash
set_manual_hash(pack_gm.graph, pack_cache_hash)
set_manual_hash(unpack_gm.graph, unpack_cache_hash)
return pack_gm, unpack_gm