pytorch/test/expect/TestTensorBoard.test_caffe2_simple_cnnmodel.expect
Orion Reblitz-Richardson 858d4a6a04 Cleanup API and remove 'experimental' warning (#23000)
Summary:
This fixes ASAN test issues with https://github.com/pytorch/pytorch/pull/21786 seen at https://circleci.com/api/v1.1/project/github/pytorch/pytorch/2212325/output/105/0?file=true and lands it again.

This cleans up the `torch.utils.tensorboard` API to remove all kwargs usage (which isn't clear to the  user) and removes the "experimental" warning in prep for our 1.2 release.

We also don't need the additional PyTorch version checks now that we are in the codebase itself.

cc yf225, lanpa, natalialunova
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23000

Reviewed By: sanekmelnikov

Differential Revision: D16349734

Pulled By: orionr

fbshipit-source-id: 604a9cad56868a55e08b509a0c6f42b84f68de95
2019-07-22 12:10:05 -07:00

320 lines
4.4 KiB
Plaintext

node {
name: "conv1/XavierFill"
op: "XavierFill"
attr {
key: "_output_shapes"
value {
list {
shape {
dim {
size: 96
}
dim {
size: 3
}
dim {
size: 11
}
dim {
size: 11
}
}
}
}
}
}
node {
name: "conv1/ConstantFill"
op: "ConstantFill"
attr {
key: "_output_shapes"
value {
list {
shape {
dim {
size: 96
}
}
}
}
}
}
node {
name: "classifier/XavierFill"
op: "XavierFill"
attr {
key: "_output_shapes"
value {
list {
shape {
dim {
size: 1000
}
dim {
size: 4096
}
}
}
}
}
}
node {
name: "classifier/ConstantFill"
op: "ConstantFill"
attr {
key: "_output_shapes"
value {
list {
shape {
dim {
size: 1000
}
}
}
}
}
}
node {
name: "conv1/Conv"
op: "Conv"
input: "conv1/data"
input: "conv1/conv1_w"
input: "conv1/conv1_b"
attr {
key: "exhaustive_search"
value {
i: 0
}
}
attr {
key: "kernel"
value {
i: 11
}
}
attr {
key: "order"
value {
s: "NCHW"
}
}
attr {
key: "stride"
value {
i: 4
}
}
}
node {
name: "conv1/Relu"
op: "Relu"
input: "conv1/conv1"
attr {
key: "cudnn_exhaustive_search"
value {
i: 0
}
}
attr {
key: "order"
value {
s: "NCHW"
}
}
}
node {
name: "conv1/MaxPool"
op: "MaxPool"
input: "conv1/conv1_1"
attr {
key: "cudnn_exhaustive_search"
value {
i: 0
}
}
attr {
key: "kernel"
value {
i: 2
}
}
attr {
key: "order"
value {
s: "NCHW"
}
}
attr {
key: "stride"
value {
i: 2
}
}
}
node {
name: "classifier/FC"
op: "FC"
input: "conv1/pool1"
input: "classifier/fc_w"
input: "classifier/fc_b"
attr {
key: "cudnn_exhaustive_search"
value {
i: 0
}
}
attr {
key: "order"
value {
s: "NCHW"
}
}
attr {
key: "use_cudnn"
value {
i: 1
}
}
}
node {
name: "classifier/Softmax"
op: "Softmax"
input: "classifier/fc"
attr {
key: "cudnn_exhaustive_search"
value {
i: 0
}
}
attr {
key: "order"
value {
s: "NCHW"
}
}
}
node {
name: "classifier/LabelCrossEntropy"
op: "LabelCrossEntropy"
input: "classifier/pred"
input: "classifier/label"
}
node {
name: "classifier/AveragedLoss"
op: "AveragedLoss"
input: "classifier/xent"
}
node {
name: "conv1/conv1_w"
op: "Blob"
input: "conv1/XavierFill:0"
}
node {
name: "conv1/conv1_b"
op: "Blob"
input: "conv1/ConstantFill:0"
}
node {
name: "classifier/fc_w"
op: "Blob"
input: "classifier/XavierFill:0"
}
node {
name: "classifier/fc_b"
op: "Blob"
input: "classifier/ConstantFill:0"
}
node {
name: "conv1/data"
op: "Placeholder"
}
node {
name: "conv1/conv1_w"
op: "Blob"
input: "conv1/XavierFill:0"
}
node {
name: "conv1/conv1_b"
op: "Blob"
input: "conv1/ConstantFill:0"
}
node {
name: "conv1/conv1"
op: "Blob"
input: "conv1/Conv:0"
}
node {
name: "conv1/conv1"
op: "Blob"
input: "conv1/Conv:0"
}
node {
name: "conv1/conv1_1"
op: "Blob"
input: "conv1/Relu:0"
}
node {
name: "conv1/conv1_1"
op: "Blob"
input: "conv1/Relu:0"
}
node {
name: "conv1/pool1"
op: "Blob"
input: "conv1/MaxPool:0"
}
node {
name: "conv1/pool1"
op: "Blob"
input: "conv1/MaxPool:0"
}
node {
name: "classifier/fc_w"
op: "Blob"
input: "classifier/XavierFill:0"
}
node {
name: "classifier/fc_b"
op: "Blob"
input: "classifier/ConstantFill:0"
}
node {
name: "classifier/fc"
op: "Blob"
input: "classifier/FC:0"
}
node {
name: "classifier/fc"
op: "Blob"
input: "classifier/FC:0"
}
node {
name: "classifier/pred"
op: "Blob"
input: "classifier/Softmax:0"
}
node {
name: "classifier/pred"
op: "Blob"
input: "classifier/Softmax:0"
}
node {
name: "classifier/label"
op: "Placeholder"
}
node {
name: "classifier/xent"
op: "Blob"
input: "classifier/LabelCrossEntropy:0"
}
node {
name: "classifier/xent"
op: "Blob"
input: "classifier/LabelCrossEntropy:0"
}
node {
name: "classifier/loss"
op: "Blob"
input: "classifier/AveragedLoss:0"
}