pytorch/test/distributed/test_inductor_collectives.py
Boyuan Feng 073b0257ba [Graph Partition] Maintain relative order within partition during reordering (#153111)
PR #151968 adds `reorder_for_minimizing_partition` for the minimal number of partitions. If reordering two nodes cannot reduce the number of partitions, `reorder_for_minimizing_partition` should maintain the relative order of these two nodes and rely on other reorder passes for some nice features, such as shorter liveness duration or less peak memory. In an extreme case, when all nodes are on gpu and can be cudagraphed, `reorder_for_minimizing_partition` should not reorder any nodes.

This PR improves `reorder_for_minimizing_partition` for the invariant: relative order of nodes within the same graph partition are maintained. To do so, we record the index of each node in the input `nodes: list[BaseSchedulerNode]` and use a heap to pop the node with the smallest index. So we always scheduler a node with smaller index in the same graph partition and respects the invariant. Previous implementation tried to use a queue to achieve that but failed. Because node_N at the end may rely on node_1 at the start, such that node_N is added to queue once node_1 is scheduled.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153111
Approved by: https://github.com/eellison
2025-05-09 18:49:53 +00:00

1510 lines
59 KiB
Python

# Owner(s): ["module: dynamo"]
import datetime
import functools
import unittest
from collections import defaultdict
from typing import Optional
from unittest.mock import patch
import torch
import torch._dynamo
import torch._dynamo.logging
import torch._dynamo.test_case
# for some reason importing functional collectives after dynamo breaks collectives handling!
import torch.distributed._functional_collectives as _functional_collectives
from torch._C import FileCheck
from torch._dynamo.testing import CompileCounter
from torch._dynamo.utils import same
from torch._inductor.comms import (
_reorder_communication_preserving_peak_memory_internal,
ReorderInfo,
)
from torch._inductor.compile_fx import compile_fx as inductor_compile_fx
from torch._inductor.scheduler import BaseSchedulerNode
from torch._inductor.utils import run_and_get_triton_code
from torch.distributed.distributed_c10d import GroupMember
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_distributed import (
_dynamo_dist_per_rank_init,
DynamoDistributedMultiProcTestCase,
DynamoDistributedSingleProcTestCase,
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
requires_cuda,
skipIfRocm,
)
from torch.testing._internal.inductor_utils import HAS_GPU
from torch.utils._python_dispatch import TorchDispatchMode
def _tolist_with_constrain_as_size(tensor):
lst = tensor.tolist()
for elem in lst:
torch._check_is_size(elem)
return lst
@requires_nccl()
@instantiate_parametrized_tests
class TestCollectivesMultiProc(DynamoDistributedMultiProcTestCase):
"""
Run correctness checks in multi-proc runner, mark with minimum # GPUs to run under
"""
def get_world_trs(self):
return {
"tag": "",
"ranks": list(range(self.world_size)),
"group_size": self.world_size,
}
@property
def world_size(self) -> int:
# hack: no matter whether we have 2 or 3 or 4 gpus, just run on 2
# works around issue with skipif<2 and workers with unpredictable #s gpu
return 2
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_broadcast_inductor(self):
"""
Testing if broadcast works correctly when using inductor
"""
def example(tensor, src, *, tag, ranks, group_size):
res = torch.ops.c10d_functional.broadcast(
tensor, src, tag, ranks, group_size
)
res = torch.ops.c10d_functional.wait_tensor(res)
return res
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
t = torch.randn(4, 4, device="cuda")
inputs = (t if self.rank == 0 else torch.zeros(4, 4, device="cuda"), 0)
eager_out = example(*inputs)
self.assertTrue(same(t, eager_out))
compiled_func = compile(example, inputs)
compiled_out = compiled_func(*inputs)
self.assertTrue(same(eager_out, compiled_out))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allreduce_inductor(self):
"""
This is matmul/cat/allreduce is a pattern we aim to optimize.
"""
def matmul_cat_col(a, b, c, d, e, f, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
matmul_cat_col = functools.partial(
matmul_cat_col,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 6
eager_out = matmul_cat_col(*inputs)
compiled_matmul_cat_col = compile(matmul_cat_col, inputs)
inductor_out = compiled_matmul_cat_col(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allreduce_inductor_cudagraph_trees(self):
"""
Tests whether cudagraph trees support all_reduce from nccl
"""
import torch.distributed as dist
# dist.all_reduce is an inplace op in eager mode but a functionanlized op in compiled mode.
# so we define eager_func and func separately for the same semantic.
def eager_func(x):
y = x * x
dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
def func(x):
y = x * x
y = dist.all_reduce(y, op=dist.ReduceOp.SUM)
x = torch.nn.functional.silu(x)
return x * y
options = {
"triton.cudagraphs": True,
"triton.cudagraph_trees": True,
}
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
compiled_func = torch.compile(
func, backend="inductor", fullgraph=True, options=options, dynamic=None
)
for nelem in [1024, 2048, 4096]:
# CI (Tesla T4) does not support bfloat16 compilation natively,
# using float
x = torch.randn(nelem, device="cuda", dtype=torch.float)
golden_out = eager_func(x)
for _ in range(3):
compiled_out = compiled_func(x)
self.assertEqual(golden_out, compiled_out)
def test_c10d_functional_tagged_pt2_compliant(self):
op = torch.ops._c10d_functional.all_reduce.default
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
op = torch.ops.c10d_functional.all_reduce.default
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_eager_allreduce_inductor_wait(self):
def eager_func(a, b, c, d, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
return ar
def inductor_func(ar, e, f):
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
eager_func = functools.partial(
eager_func,
**self.get_world_trs(),
)
eager_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 4
inductor_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = inductor_func(eager_func(*eager_inputs), *inductor_inputs)
compiled_inductor_func = compile(
inductor_func, [eager_func(*eager_inputs)] + list(inductor_inputs)
)
inductor_out = compiled_inductor_func(
eager_func(*eager_inputs), *inductor_inputs
)
print(f"eager_out, {eager_out}")
print(f"inductor_out, {inductor_out}")
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_inductor_allreduce_eager_wait(self):
def inductor_func(a, b, c, d, *, tag, ranks, group_size):
x = torch.matmul(a, b)
y = torch.matmul(c, d)
z = torch.cat((x, y))
ar = torch.ops.c10d_functional.all_reduce(z, "sum", tag, ranks, group_size)
return ar
def eager_func(ar, e, f):
g = torch.matmul(e, f)
ar = torch.ops.c10d_functional.wait_tensor(ar)
out = torch.add(ar, g.repeat(2, 1))
return (out,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inductor_func = functools.partial(
inductor_func,
**self.get_world_trs(),
)
inductor_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 4
eager_inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = eager_func(inductor_func(*inductor_inputs), *eager_inputs)
compiled_inductor_func = compile(inductor_func, inductor_inputs)
inductor_out = eager_func(
compiled_inductor_func(*inductor_inputs), *eager_inputs
)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@skipIfRocm
def test_eager_async_allreduce_inductor_wait(self):
import torch.distributed as dist
from torch._inductor.utils import run_and_get_code
def all_reduce_non_functional_eager(x):
y = x * x
work = dist.all_reduce(y, op=dist.ReduceOp.SUM, async_op=True)
assert isinstance(work, torch.distributed.Work)
return work, y
def all_reduce_wait(work, y): # potentially compiled
if torch.compiler.is_dynamo_compiling():
torch.ops.c10d_functional.wait_tensor(y)
else:
work.wait(datetime.timedelta(seconds=10))
# Under compile, if `wait_tensor(y)` above is correctly executed,
# `y`'s data is in its final form and the output of this function will match eager;
# otherwise, `y * y` will run in parallel with `all_reduce(y)` and the output of this function
# will not match eager.
return y * y
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
x = torch.ones(12800, 12800, device="cuda") + self.rank
self.assertEqual(torch._C._distributed_c10d._get_work_registry_size(), 0)
# NOTE: We run for 10 iterations each, to ensure that the GPU execution is way behind CPU
# and that `y * y` on CPU side will be issued before `all_reduce(y)` on GPU side is done,
# thus guaranteeing that in the bad case `y * y` on GPU side will run in parallel with `all_reduce(y)`
# thus will produce the wrong result that fails the unit test.
def _run_loop_collective_wait(x, wait_fn, expected_registry_size):
for _ in range(10):
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(), 0
)
work, y = all_reduce_non_functional_eager(x)
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(),
expected_registry_size,
)
out = wait_fn(work, y)
self.assertEqual(
torch._C._distributed_c10d._get_work_registry_size(), 0
)
return work, y, out
# Test: Pure-eager
all_reduce_wait_eager = all_reduce_wait
work, y, out_ref = _run_loop_collective_wait(
x,
wait_fn=all_reduce_wait_eager,
expected_registry_size=0,
)
all_reduce_wait_compiled = torch.compile(
all_reduce_wait,
backend="inductor",
fullgraph=True,
)
# Test: Issue comm in eager -> wait for comm in compile. Use the context manager.
with _functional_collectives.allow_inflight_collective_as_graph_input_ctx():
work, y, out_compiled = _run_loop_collective_wait(
x, wait_fn=all_reduce_wait_compiled, expected_registry_size=1
)
self.assertEqual(out_ref, out_compiled)
# Check that `wait_tensor()` is in the Inductor generated code
_, triton_codes = run_and_get_code(all_reduce_wait_compiled, work, y)
FileCheck().check("torch.ops._c10d_functional.wait_tensor.default(").run(
triton_codes[0]
)
# Failure Case: Issue comm in eager -> wait for comm in compile. Doesn't use the context manager.
_, _, out_compiled = _run_loop_collective_wait(
x, wait_fn=all_reduce_wait_compiled, expected_registry_size=0
)
# In this case `.wait_tensor(y)` in compiled region will not be able to find the corresponding work object
# to invoke the wait, thus the result will not match eager.
self.assertNotEqual(out_ref, out_compiled)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
def test_allreduce_input_buffer_reuse(self):
def func(a, *, tag, ranks, group_size):
ar = _functional_collectives.all_reduce(a, "sum", ranks, tag)
c = torch.relu(a)
d = torch.matmul(c, c)
e = d + ar
return (e,)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = torch.ones(4, 4, device="cuda") + self.rank
compiled = torch.compile(func)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_permute_tensor(self):
def func(tensor, src_dst_pairs, *, tag, ranks, group_size):
return _functional_collectives.permute_tensor(
tensor, src_dst_pairs, ranks, tag
)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = (
# rank0: [0., 1.], rank1: [2., 3.]
torch.arange(2, dtype=torch.float32, device="cuda") + 2 * self.rank,
[1, 0],
)
compiled = torch.compile(func)
out = compiled(*inputs, **self.get_world_trs())
correct = func(*inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
# rank0: [2., 3.], rank1: [0., 1.]
expected = torch.arange(2, dtype=torch.float32, device="cuda") + 2 * (
(self.rank - 1 + self.world_size) % self.world_size
)
self.assertEqual(out, expected)
self.assertEqual(correct, expected)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._inductor.config, "allow_buffer_reuse", True)
def test_allgather_output_buffer_reuse(self):
class Model(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.emb = torch.nn.Embedding(4, 4)
def forward(self, x, world_size, tag, ranks, group_size):
y = self.emb(x)
last_dim = y.dim() - 1
res = _functional_collectives.all_gather_tensor(y, 0, ranks, tag)
out = torch.cat(torch.chunk(res, world_size, dim=0), dim=last_dim)
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model = Model().cuda()
model_compiled = torch.compile(model)
inp = torch.tensor([[2, 1, 3, 0]], dtype=torch.long, device="cuda")
out = model_compiled(inp, self.world_size, **self.get_world_trs())
correct = model(inp, self.world_size, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allgather_contiguous_input(self):
class Model(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.emb = torch.nn.Embedding(4, 4)
def forward(self, x, world_size, tag, ranks, group_size):
y = self.emb(x)
last_dim = y.dim() - 1
y = y.transpose_(0, last_dim).contiguous()
_functional_collectives.all_gather_tensor(y, 0, ranks, tag)
out = y.transpose_(0, last_dim).contiguous()
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
model = Model().cuda()
model_compiled = torch.compile(model)
inp = torch.tensor([[2, 1, 3, 0]], dtype=torch.long, device="cuda")
out = model_compiled(inp, self.world_size, **self.get_world_trs())
correct = model(inp, self.world_size, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_allgather_into_tensor_inductor(self):
"""
This is matmul/cat/allreduce is a pattern we aim to optimize.
"""
def example(a, b, *, tag, ranks, group_size):
c = torch.matmul(a, b)
ag = torch.ops.c10d_functional.all_gather_into_tensor(
c, tag, ranks, group_size
)
ag = torch.ops.c10d_functional.wait_tensor(ag)
return (ag,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = example(*inputs)
compiled_matmul_cat_col = compile(example, inputs)
inductor_out = compiled_matmul_cat_col(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_reduce_scatter_tensor_inductor(self):
def example(a, b, *, tag, ranks, group_size):
c = torch.matmul(a, b)
ag = torch.ops.c10d_functional.reduce_scatter_tensor(
c, "sum", tag, ranks, group_size
)
ag = torch.ops.c10d_functional.wait_tensor(ag)
return (ag,)
def compile(func, example_inputs):
graph = make_fx(func)(*example_inputs)
return inductor_compile_fx(graph, example_inputs)
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
example = functools.partial(
example,
**self.get_world_trs(),
)
inputs = (torch.ones(4, 4, device="cuda") + self.rank,) * 2
eager_out = example(*inputs)
compiled_fn = compile(example, inputs)
inductor_out = compiled_fn(*inputs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._dynamo.config, "capture_scalar_outputs", True)
def test_all_to_all_single_inductor(self):
def example(
inp,
input_split_sizes_tensor,
output_split_sizes_tensor,
*,
tag,
ranks,
group_size,
):
input_split_sizes = _tolist_with_constrain_as_size(input_split_sizes_tensor)
output_split_sizes = _tolist_with_constrain_as_size(
output_split_sizes_tensor
)
a2a = torch.ops.c10d_functional.all_to_all_single(
inp,
output_split_sizes,
input_split_sizes,
tag,
ranks,
group_size,
)
a2a = torch.ops.c10d_functional.wait_tensor(a2a)
out = a2a / a2a.sum(dim=0)
return out
with _dynamo_dist_per_rank_init(
self.rank, self.world_size
), torch._dynamo.config.patch(
dynamic_shapes=True,
capture_dynamic_output_shape_ops=True,
capture_scalar_outputs=True,
):
row = self.world_size * (self.rank + 1) * (self.world_size + 1) / 2
input_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
output_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
inputs = (
torch.ones(int(row), 5, device="cuda") * (self.rank + 1),
input_split_sizes_tensor,
output_split_sizes_tensor,
)
trs = self.get_world_trs()
compiled_fn = torch.compile(example, fullgraph=True, dynamic=True)
code = run_and_get_triton_code(compiled_fn, *inputs, **trs)
(
FileCheck()
.check_regex(
"torch.ops._c10d_functional.all_to_all_single.default\\("
"arg\\d+_\\d+, "
"\\[u\\d+, u\\d+\\], "
"\\[u\\d+, u\\d+\\]"
)
.run(code)
)
eager_out = example(*inputs, **trs)
inductor_out = compiled_fn(*inputs, **trs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
# The goal of this test is that when `unsafe_allow_recompute_of_collectives=False`,
# The partitioner will *never* recompute collectives in the backward, even
# if the activation_memory_budget partitioner is being used,
# unless there is a manual user checkpoint() region (which we know makes it safe
# to recompute the collective, since we assume that the user applied the AC
# region consistently across all ranks)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
@patch.object(torch._dynamo.config, "capture_scalar_outputs", True)
@patch.object(torch._functorch.config, "activation_memory_budget", 0.01)
@parametrize("override_with_ac", [False, True])
def test_all_to_all_recompute_is_always_banned(self, override_with_ac):
@torch.library.custom_op("custom_ns::foo", mutates_args=())
def foo(x: torch.Tensor) -> torch.Tensor:
return x + 1
@foo.register_fake
def _(x):
return torch.empty_like(x)
def setup_context(ctx, inputs, output):
ctx.save_for_backward(inputs[0])
return
def backward(ctx, grad):
(x,) = ctx.saved_tensors
return grad * x
foo.register_autograd(backward, setup_context=setup_context)
class AllToAllSingle(torch.autograd.Function):
@staticmethod
def forward(
ctx,
input: torch.Tensor,
output_split_sizes,
input_split_sizes,
tag,
ranks,
group_size: int,
) -> torch.Tensor:
ctx.output_split_sizes = input_split_sizes
ctx.input_split_sizes = output_split_sizes
ctx.group_size = group_size
a2a = torch.ops._c10d_functional.all_to_all_single.default(
input,
output_split_sizes,
input_split_sizes,
"0",
)
a2a = torch.ops.c10d_functional.wait_tensor(a2a)
return a2a
@staticmethod
def backward(ctx, grad):
grad = torch.ops._c10d_functional.all_to_all_single.default(
grad,
ctx.output_split_sizes,
ctx.input_split_sizes,
"0",
)
return (
torch.ops.c10d_functional.wait_tensor(grad),
None,
None,
None,
None,
None,
)
def alltoall_autograd(
inp,
output_split_sizes,
input_split_sizes,
tag,
ranks,
group_size,
):
out = AllToAllSingle.apply(
inp, output_split_sizes, input_split_sizes, tag, ranks, group_size
)
return out
# simple mode to track how many collective ops we saw in the backward
class TrackingMode(TorchDispatchMode):
def __init__(self):
super().__init__()
self.ops_counter = defaultdict(int)
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
rs = func(*args, **kwargs)
self.ops_counter[func] += 1
return rs
def example(
inp,
input_split_sizes_tensor,
output_split_sizes_tensor,
*,
tag,
ranks,
group_size,
):
input_split_sizes = _tolist_with_constrain_as_size(input_split_sizes_tensor)
output_split_sizes = _tolist_with_constrain_as_size(
output_split_sizes_tensor
)
a2a = torch.ops.custom_ns.alltoall_autograd.default(
inp,
output_split_sizes,
input_split_sizes,
tag,
ranks,
group_size,
)
return torch.ops.custom_ns.foo(a2a)
with _dynamo_dist_per_rank_init(
self.rank, self.world_size
), torch._dynamo.config.patch(
dynamic_shapes=True,
capture_dynamic_output_shape_ops=True,
capture_scalar_outputs=True,
), torch.library._scoped_library(
"custom_ns", "FRAGMENT"
) as lib:
lib.define(
"alltoall_autograd(Tensor input, SymInt[]? output_split_sizes, SymInt[]? input_split_sizes, str tag, int[] ranks, int group_size) -> Tensor" # noqa: B950
)
lib.impl("alltoall_autograd", alltoall_autograd, "Autograd")
lib.impl("alltoall_autograd", alltoall_autograd, "Meta")
row = self.world_size * (self.rank + 1) * (self.world_size + 1) / 2
input_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
output_split_sizes_tensor = torch.tensor(
[(i + 1) * (self.rank + 1) for i in range(self.world_size)],
dtype=torch.int64,
)
inputs = (
torch.ones(int(row), 5, device="cuda", requires_grad=True)
* (self.rank + 1),
input_split_sizes_tensor,
output_split_sizes_tensor,
)
trs = self.get_world_trs()
compiled_fn = torch.compile(
example,
fullgraph=True,
dynamic=True,
backend="aot_eager_decomp_partition",
)
if override_with_ac:
def compiled_fn_wrapper(*args):
return example(*inputs, **trs)
out = torch.utils.checkpoint.checkpoint(
compiled_fn_wrapper, *inputs, use_reentrant=False
)
else:
out = compiled_fn(*inputs, **trs)
# track how many all_to_alls we saw in the backward
with TrackingMode() as m:
out.sum().backward()
if override_with_ac:
# We wrapped our test in AC, which overrides the partitioner decision
# of never recomputing collectives.
# So we should properly see the all2all be recomputed in the backward
self.assertEqual(
m.ops_counter[torch.ops._c10d_functional.all_to_all_single.default],
2,
)
else:
# there is 1 all2all in the fw, and 1 all2all in the backward.
# notably: even though activation_memory_budget == 0 ("recompute_everything"),
# we are still choosing *not* to recompute the all2all from the fw
self.assertEqual(
m.ops_counter[torch.ops._c10d_functional.all_to_all_single.default],
1,
)
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@skip_if_lt_x_gpu(2)
def test_all_to_all_single_inductor_split_sizes_none(self):
def example(inp, *, tag, ranks, group_size):
a2a = torch.ops.c10d_functional.all_to_all_single(
inp,
None,
None,
tag,
ranks,
group_size,
)
a2a = torch.ops.c10d_functional.wait_tensor(a2a)
out = a2a / a2a.sum(dim=0)
return out
with _dynamo_dist_per_rank_init(self.rank, self.world_size):
inputs = (
torch.ones(self.world_size, self.world_size, device="cuda")
* (self.rank + 1),
)
trs = self.get_world_trs()
compiled_fn = torch.compile(example, fullgraph=True, dynamic=True)
code = run_and_get_triton_code(compiled_fn, *inputs, **trs)
(
FileCheck()
.check_regex(
"torch.ops._c10d_functional.all_to_all_single.default\\("
"arg\\d+_\\d+, "
"\\[s\\d+ // \\d, s\\d+ // \\d\\], "
"\\[s\\d+ // \\d, s\\d+ // \\d\\]"
)
.run(code)
)
eager_out = example(*inputs, **trs)
inductor_out = compiled_fn(*inputs, **trs)
self.assertTrue(same(eager_out, inductor_out, tol=0.001))
@instantiate_parametrized_tests
@requires_nccl()
@requires_cuda
class TestCollectivesInductor(DynamoDistributedSingleProcTestCase):
"""
Prefer single-proc test runner for basic tests as it is easier to work with.
"""
def get_world_trs(self, world_size=1):
return {
"tag": "",
"ranks": list(range(world_size)),
"group_size": world_size,
}
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch(debug=True)
def test_inductor_single_op(self):
def func(inp, *, tag, ranks, group_size):
ar = torch.ops.c10d_functional.all_reduce(
inp, "sum", tag, ranks, group_size
)
ar = torch.ops.c10d_functional.wait_tensor(ar)
return ar
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
out = compiled(inputs, **self.get_world_trs())
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check(".run(arg0_1, buf0, 16")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("return (buf0")
.run(code)
)
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch(debug=True)
def test_inductor_steal_buffer(self):
"""
it's ok and optimal if inductor allreduce mutates the buffer of an intermediate
that isn't going to be used again
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
ar = torch.ops.c10d_functional.all_reduce(x, "sum", tag, ranks, group_size)
ar = torch.ops.c10d_functional.wait_tensor(ar)
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar, other
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
(
FileCheck()
.check("buf0 = empty_strided")
.check(".run(arg0_1, buf0")
.check("torch.ops._c10d_functional.all_reduce_.default(buf0")
.check("torch.ops._c10d_functional.wait_tensor.default(buf0")
.check("buf5 = empty_strided")
.check(".run(buf5, 16")
.check("return (buf0, buf5")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
def _test_inductor_doesnt_mutate_shared(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
ar = torch.ops.c10d_functional.all_reduce(x, "sum", tag, ranks, group_size)
y = x + 2
ar = torch.ops.c10d_functional.wait_tensor(ar)
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar, y, other
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf1 = buf0")
.check("buf6 = empty_strided")
.check(".run(buf1, arg0_1, buf6, 16")
.check("torch.ops._c10d_functional.all_reduce_.default(buf1")
.check("torch.ops._c10d_functional.wait_tensor.default(buf1")
.check("buf7 = empty_strided")
.check(".run(buf7, 16")
.check("return (buf1, buf6, buf7")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
self.assertTrue(same(out, correct))
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_doesnt_mutate_shared(self):
self._test_inductor_doesnt_mutate_shared()
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
@torch._inductor.config.patch("graph_partition", True)
def test_inductor_doesnt_mutate_shared_graph_partition(self):
# checks graph partition reorder does not change relative order of ops
# when all ops are on cuda
self._test_inductor_doesnt_mutate_shared()
def test_dynamo_trace_allreduce(self):
def func(inp):
ar = _functional_collectives.all_reduce(inp, "sum", "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_reduce, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_all_gather_tensor(self):
def func(inp):
ar = _functional_collectives.all_gather_tensor(inp, 0, "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_gather, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_all_gather_tensor_pg(self):
def func(inp, *, pg):
ar = _functional_collectives.all_gather_tensor(inp, 0, pg)
return ar
inputs = torch.ones(4, 4, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
out = compiled(inputs, pg=GroupMember.WORLD)
correct = func(inputs, pg=GroupMember.WORLD)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (all_gather, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_rewrite_dist_all_gather(self):
def func(inp, out, *, pg):
torch.distributed.all_gather_into_tensor(
out,
inp,
pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_gather, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_all_gather_list(self):
def func(inp, out, *, pg):
torch.distributed.all_gather(
out,
inp,
pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = [torch.empty(global_size, device=self.device)]
correct_outputs = [torch.empty(global_size, device=self.device)]
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_all_gather_args_match(self):
# Duplicated most of the structure from test_dynamo_rewrite_dist_all_gather
# except uses kwargs to ensure rewrite has matching arg names
def func(inp, out, *, pg):
torch.distributed.all_gather_into_tensor(
output_tensor=out,
input_tensor=inp,
group=pg,
async_op=False,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_gather, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_rewrite_dist_reduce_scatter(self):
def func(inp, out, *, pg):
torch.distributed.reduce_scatter_tensor(
out,
inp,
group=pg,
)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (reduce_scatter, wait, copy_)
assert counter.op_count == 3
assert same(outputs, correct_outputs)
@parametrize(
"pg_mode",
[
"positional",
"positional_none",
"kwargs",
"kwargs_none",
"unspecified",
],
)
def test_dynamo_rewrite_dist_allreduce(self, pg_mode):
def func(tensor, *args, **kwargs):
torch.distributed.all_reduce(
tensor,
*args,
**kwargs,
)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
args = []
kwargs = {}
if pg_mode == "positional":
args.append(torch.distributed.ReduceOp.MAX)
args.append(GroupMember.WORLD)
elif pg_mode == "positional_none":
args.append(torch.distributed.ReduceOp.MAX)
args.append(None)
elif pg_mode == "kwargs":
kwargs["group"] = GroupMember.WORLD
elif pg_mode == "kwargs_none":
kwargs["group"] = None
else:
assert pg_mode == "unspecified"
inputs_compiled = torch.ones(2, device=self.device)
inputs_eager = torch.ones(2, device=self.device)
compiled(inputs_compiled, *args, **kwargs)
func(inputs_eager, *args, **kwargs)
assert counter.frame_count == 1
# should test more precisely, but the 3 is supposed to be (all_reduce, wait, copy_)
assert counter.op_count == 3
assert same(inputs_compiled, inputs_eager)
def test_dynamo_rewrite_dist_all_to_all_single(self):
def func(output, input, pg):
torch.distributed.all_to_all_single(output, input, group=pg)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
input_compiled = torch.ones(2, device=self.device)
input_eager = torch.ones(2, device=self.device)
output_compiled = torch.empty(2, device=self.device)
output_eager = torch.empty(2, device=self.device)
compiled(output_compiled, input_compiled, GroupMember.WORLD)
func(output_eager, input_eager, GroupMember.WORLD)
assert counter.frame_count == 1
assert same(output_compiled, output_eager)
@parametrize(
"reduce_op",
[
torch.distributed.ReduceOp.SUM,
torch.distributed.ReduceOp.AVG,
torch.distributed.ReduceOp.PRODUCT,
torch.distributed.ReduceOp.MIN,
torch.distributed.ReduceOp.MAX,
],
)
def test_dynamo_rewrite_dist_allreduce_reduce_op(self, reduce_op):
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
def verify_rewrite(gm, _):
ar_nodes = []
for node in gm.graph.nodes:
if node.target in [
torch.ops.c10d_functional.all_reduce,
torch.ops._c10d_functional.all_reduce,
]:
ar_nodes.append(node)
self.assertEqual(len(ar_nodes), 1)
reduce_op_str = ar_nodes[0].args[1]
self.assertEqual(REDUCE_OP_TO_STR[reduce_op], reduce_op_str)
return gm
compiled = torch.compile(
torch.distributed.all_reduce,
backend=verify_rewrite,
fullgraph=True,
)
inputs = (
torch.ones(2, device=self.device),
reduce_op,
GroupMember.WORLD,
)
compiled(*inputs)
@parametrize(
"source",
[
"GroupMember.WORLD",
"group.WORLD",
"_get_default_group",
],
)
def test_dynamo_get_world_group(self, source):
def func(tensor):
if source == "GroupMember.WORLD":
group = torch.distributed.GroupMember.WORLD
elif source == "group.WORLD":
group = torch.distributed.group.WORLD
else:
assert source == "_get_default_group"
group = torch.distributed.distributed_c10d._get_default_group()
torch.distributed.all_reduce(
tensor,
group=group,
)
def verify(gm, _):
ar_nodes = []
for node in gm.graph.nodes:
if node.target in [
torch.ops.c10d_functional.all_reduce,
torch.ops._c10d_functional.all_reduce,
]:
ar_nodes.append(node)
self.assertEqual(len(ar_nodes), 1)
return gm
compiled = torch.compile(func, backend=verify, fullgraph=True)
input = torch.ones(2, device=self.device)
compiled(input)
def test_dynamo_support_collective_op_with_async_op_False(self):
def func(inp, out, *, pg):
# user explicitly set the attribute `async_op` to False,
# there should be no graph break
torch.distributed.reduce_scatter_tensor(out, inp, group=pg, async_op=False)
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert counter.op_count == 3
assert same(outputs, correct_outputs)
def test_dynamo_graphbreaks_unsupported_async_op(self):
def func(inp, out, *, pg):
work = torch.distributed.reduce_scatter_tensor(
out, inp, group=pg, async_op=True
)
work.wait()
local_size = [4, 4]
# single-proc test
global_size = local_size
inputs = torch.ones(local_size, device=self.device)
outputs = torch.empty(global_size, device=self.device)
correct_outputs = torch.empty(global_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
compiled(inputs, outputs, pg=GroupMember.WORLD)
func(inputs, correct_outputs, pg=GroupMember.WORLD)
assert counter.frame_count == 0
assert counter.op_count == 0
assert same(outputs, correct_outputs)
def test_dynamo_pg_var(self):
def func(inp, *, pg):
x = pg.rank() + 1 % pg.size()
return inp + x
local_size = [4, 4]
inputs = torch.ones(local_size, device=self.device)
correct_outputs = torch.empty(local_size, device=self.device)
counter = CompileCounter()
compiled = torch.compile(func, backend=counter, fullgraph=True)
outputs = compiled(inputs, pg=GroupMember.WORLD)
correct_outputs = func(inputs, pg=GroupMember.WORLD)
assert counter.frame_count == 1
assert counter.op_count == 1
assert same(outputs, correct_outputs)
def test_dynamo_trace_reduce_scatter_tensor(self):
def func(inp):
ar = _functional_collectives.reduce_scatter_tensor(inp, "sum", 0, "0")
return ar
inputs = torch.ones(4, 4, device="cuda")
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs)
correct = func(inputs)
self.assertEqual(counter.frame_count, 1)
# should test more precisely, but the 2 is supposed to be (reduce_scatter, wait)
self.assertEqual(counter.op_count, 2)
self.assertTrue(same(out, correct))
def test_dynamo_trace_allgather_coalesced(self):
def func(inp, *, tag, ranks, group_size):
ar = torch.ops.c10d_functional.all_gather_into_tensor_coalesced(
inp, tag, ranks, group_size
)
return ar
inputs = [torch.ones(4, 4, device="cuda"), torch.ones(6, 6, device="cuda")]
counter = CompileCounter()
compiled = torch.compile(func, backend=counter)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert counter.frame_count == 1
assert counter.op_count == 3 # It generates 2 getattr to unpack the array
assert same(out, correct)
def test_backwards(self):
"""
It's probably not that common to need backwards support for collectives.
However, I wanted to at least see if it was possible to support it as a design goal.
"""
def func(inp):
ar = _functional_collectives.all_reduce(inp, "sum", "0")
return ar
input = torch.ones(4, 4, device="cuda", requires_grad=True)
compiled = torch.compile(
func, backend="aot_eager"
) # inductor bug with single-op allreduce graph
out = compiled(input)
out.sum().backward()
correct_input = input.detach().clone().requires_grad_()
correct = func(correct_input)
correct.sum().backward()
self.assertTrue(same(out, correct))
self.assertTrue(same(input.grad, correct_input.grad))
def test_meta(self):
x = torch.rand((2, 3, 4), device="meta")
out = torch.ops.c10d_functional.all_reduce(x, "sum", **self.get_world_trs())
self.assertEqual(x.size(), out.size())
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_all_gather_coalesced(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
tensor_list = torch.ops.c10d_functional.all_gather_into_tensor_coalesced(
[x, inp], tag, ranks, group_size
)
y = x + 2
ar0 = torch.ops.c10d_functional.wait_tensor(tensor_list[0])
ar1 = torch.ops.c10d_functional.wait_tensor(tensor_list[1])
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar0, y, other, ar1
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: Make sure we are not unneccessarily copying the outputs of
# wait_tensors before they are returned from the graph.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf6 = empty_strided")
.check(".run(arg0_1, buf0, buf6, 16")
.check(
"buf1 = torch.ops._c10d_functional.all_gather_into_tensor_coalesced.default([buf0, arg0_1]"
)
.check("buf2 = buf1[0]")
.check("buf3 = buf1[1]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("buf7 = buf0; del buf0 # reuse")
.check(".run(buf7, 16")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("return (buf2, buf6, buf7, buf3")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert same(out, correct), f"{out} va {correct}"
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
@torch._inductor.config.patch({"debug": True, "triton.descriptive_names": False})
def test_inductor_reduce_scatter_coalesced(self):
"""
make sure that an intermediate that's going to be reuse isn't mutated unless copied
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
tensor_list = torch.ops.c10d_functional.reduce_scatter_tensor_coalesced(
[x, inp], "sum", tag, ranks, group_size
)
y = x + 2
ar0 = torch.ops.c10d_functional.wait_tensor(tensor_list[0])
ar1 = torch.ops.c10d_functional.wait_tensor(tensor_list[1])
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar0, y, other, ar1
inputs = torch.ones(4, 4, device="cuda")
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: The first return value should be the output of the first wait_tensor.
# We want to make sure no unneccessary copy is made.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf6 = empty_strided")
.check(".run(arg0_1, buf0, buf6, 16")
.check(
"buf1 = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced.default([buf0, arg0_1]"
)
.check("buf2 = buf1[0]")
.check("buf3 = buf1[1]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
.check("buf7 = buf0; del buf0 # reuse")
.check(".run(buf7, 16")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("return (buf2, buf6, buf7, buf3")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert same(out, correct), f"{out} va {correct}"
@unittest.skipIf(not HAS_GPU, "Inductor+gpu needs triton and recent GPU arch")
def test_reorder_peak_memory(self):
"""
TODO(whc)
- check each of the `limiting_factor` cases
- confirm peak memory is respected in some adversarial case
- check whether it is expected / correct that the "buf7 = buf0; del buf0 # reuse" statement materially changes
"""
def func(inp, *, tag, ranks, group_size):
x = inp + 1
tensor_list = torch.ops.c10d_functional.reduce_scatter_tensor_coalesced(
[x, inp], "sum", tag, ranks, group_size
)
y = x + 2
ar0 = torch.ops.c10d_functional.wait_tensor(tensor_list[0])
ar1 = torch.ops.c10d_functional.wait_tensor(tensor_list[1])
# ensure other is not incorrectly aliasing ar's buffer
other = torch.ones_like(inp) + 22
return ar0, y, other, ar1
inputs = torch.ones(4, 4, device="cuda")
# get stats directly from the internal helper without affecting the real pass's signature
node_stats: Optional[dict[BaseSchedulerNode, ReorderInfo]] = None
def _reorder_communication_preserving_peak_memory(
snodes: list[BaseSchedulerNode],
) -> list[BaseSchedulerNode]:
nonlocal node_stats
(
reordered_snodes,
node_stats,
) = _reorder_communication_preserving_peak_memory_internal(snodes)
return reordered_snodes
with torch._inductor.config.patch(
{
"reorder_for_compute_comm_overlap": True,
"reorder_for_compute_comm_overlap_passes": [
"sink_waits",
# same as reorder_communication_preserving_peak_memory but returns debug info structures directly
_reorder_communication_preserving_peak_memory,
],
}
):
compiled = torch.compile(func)
code = run_and_get_triton_code(compiled, inputs, **self.get_world_trs())
# NOTE: The first return value should be the output of the first wait_tensor.
# We want to make sure no unneccessary copy is made.
(
FileCheck()
.check("buf0 = empty_strided")
.check("buf6 = empty_strided")
.check(".run(arg0_1, buf0, buf6, 16")
.check(
"buf1 = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced.default([buf0, arg0_1]"
)
# .check("buf2 = buf1[0]")
# .check("buf3 = buf1[1]")
.check("torch.ops._c10d_functional.wait_tensor.default(buf2")
# .check("buf7 = buf0; del buf0 # reuse")
# .check(".run(buf7, 16")
.check("torch.ops._c10d_functional.wait_tensor.default(buf3")
.check("return (buf2, buf6, buf7, buf3")
.run(code)
)
out = compiled(inputs, **self.get_world_trs())
correct = func(inputs, **self.get_world_trs())
assert same(out, correct), f"{out} va {correct}"
# TODO make the test case more interesting and validate the actual desired behavior
assert node_stats is not None
self.assertTrue(isinstance(node_stats, dict))
self.assertEqual(len(node_stats), 1)
for stats in node_stats.values():
self.assertEqual(stats.initial_exposed, 0)
self.assertEqual(stats.limiting_factor, "data dependency")
self.assertEqual(stats.moves, 0)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()