mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
There has been a series of attempts to provide support for resizing in torch operators like `torch.sigmoid(x, out=y)`, i.e., `y` would have a different shape before and after this expression. Prior to this patch, we have some checks to graph break if the shape changed. This patch extends 1. extends the existing check and graph break for any shape change, not just for `TensorVariable` with source field. 2. removes an old code path which was introduced to address the shape change, but became obselete in that regard because we added extra checks to graph break upon shape change. Moreover, this old code path is unsound, it tries to replace references to the old `TensorVariable` the new one returned by `wrap_fx_proxy`, but it only does the replacement in `symbolic_locals`, which breaks when cells are involved. In general the old `TensorVariable` could be _anywhere_, think the `replace_all` we had for immutable VTs. Pull Request resolved: https://github.com/pytorch/pytorch/pull/140202 Approved by: https://github.com/jansel ghstack dependencies: #140035, #140036, #140149, #140150, #140151, #140201
1188 lines
49 KiB
Python
1188 lines
49 KiB
Python
# mypy: allow-untyped-decorators
|
|
# mypy: allow-untyped-defs
|
|
import functools
|
|
import inspect
|
|
import logging
|
|
import math
|
|
import re
|
|
from typing import Dict, List, TYPE_CHECKING
|
|
|
|
import torch._C
|
|
import torch._refs
|
|
import torch.fx
|
|
import torch.nn
|
|
from torch._guards import TracingContext
|
|
from torch._logging import warning_once
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
|
|
|
|
from .. import config, polyfills, variables
|
|
from ..codegen import PyCodegen
|
|
from ..create_parameter_op import (
|
|
can_convert_to_tracable_parameter,
|
|
new_parameter_placeholder,
|
|
tracable_create_parameter,
|
|
)
|
|
from ..device_interface import get_registered_device_interfaces
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import CallFunctionNoArgsSource, SyntheticLocalSource
|
|
from ..utils import (
|
|
check_unspec_or_constant_args,
|
|
guard_if_dyn,
|
|
has_torch_function,
|
|
hashable,
|
|
product,
|
|
proxy_args_kwargs,
|
|
unwrap_if_wrapper,
|
|
)
|
|
from .base import VariableTracker
|
|
from .ctx_manager import (
|
|
AutocastModeVariable,
|
|
NullContextVariable,
|
|
TorchFunctionDisableVariable,
|
|
)
|
|
from .distributed import DistributedVariable, ProcessGroupVariable
|
|
from .lists import ListVariable, TupleVariable
|
|
from .torch_function import (
|
|
can_dispatch_torch_function,
|
|
dispatch_torch_function,
|
|
TorchFunctionModeStackVariable,
|
|
)
|
|
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None # type: ignore[assignment]
|
|
|
|
try:
|
|
from torch.distributed._composable.fsdp import _fsdp_param_group
|
|
except ModuleNotFoundError:
|
|
_fsdp_param_group = None # type: ignore[assignment]
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
supported_ctx_manager_classes = dict.fromkeys(
|
|
[
|
|
torch.profiler.profiler.profile,
|
|
torch.autograd.forward_ad._set_fwd_grad_enabled,
|
|
torch.autograd.forward_ad.dual_level,
|
|
torch.autograd.profiler.profile,
|
|
torch.autograd.profiler.record_function,
|
|
torch._C.DisableTorchFunctionSubclass,
|
|
torch._functorch.vmap.vmap_increment_nesting,
|
|
torch._functorch.eager_transforms.grad_increment_nesting,
|
|
torch._functorch.eager_transforms.jvp_increment_nesting,
|
|
torch._functorch.eager_transforms.enable_inplace_requires_grad,
|
|
torch.amp.autocast_mode.autocast,
|
|
torch.autograd.grad_mode.enable_grad,
|
|
torch.autograd.grad_mode.inference_mode,
|
|
torch.autograd.grad_mode.no_grad,
|
|
torch.autograd.grad_mode.set_grad_enabled,
|
|
torch.autograd.graph.disable_saved_tensors_hooks,
|
|
torch.cpu.amp.autocast_mode.autocast,
|
|
torch.cuda.amp.autocast_mode.autocast,
|
|
torch.nn.attention.sdpa_kernel,
|
|
torch.nn.attention._sdpa_kernel_variadic,
|
|
]
|
|
)
|
|
|
|
|
|
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
|
|
[
|
|
torch._shape_as_tensor,
|
|
]
|
|
)
|
|
|
|
constant_fold_functions_need_guards = [
|
|
torch.cuda.current_device,
|
|
]
|
|
|
|
constant_fold_functions = [
|
|
torch._assert,
|
|
torch._utils._get_device_index,
|
|
torch._C._get_cublas_allow_tf32,
|
|
torch._C._is_any_autocast_enabled,
|
|
torch.cuda.get_device_properties,
|
|
torch.cuda.is_available,
|
|
torch.distributed.is_available,
|
|
torch.get_autocast_dtype,
|
|
torch.get_autocast_gpu_dtype,
|
|
torch.get_default_dtype,
|
|
torch.is_autocast_cache_enabled,
|
|
torch.is_autocast_cpu_enabled,
|
|
torch.is_autocast_enabled,
|
|
torch.is_complex,
|
|
torch.is_floating_point,
|
|
torch.nn.functional._Reduction.get_enum, # type: ignore[attr-defined]
|
|
torch.promote_types,
|
|
torch._C._get_privateuse1_backend_name,
|
|
torch.autograd._is_checkpoint_valid,
|
|
] + constant_fold_functions_need_guards
|
|
if torch.distributed.is_available():
|
|
constant_fold_functions.extend(
|
|
[
|
|
torch.distributed.is_initialized,
|
|
torch.distributed.get_rank,
|
|
torch.distributed.get_world_size,
|
|
]
|
|
)
|
|
# Convert to dict for O(1) access times
|
|
constant_fold_functions_need_guards = dict.fromkeys(constant_fold_functions_need_guards)
|
|
constant_fold_functions = dict.fromkeys(constant_fold_functions)
|
|
|
|
|
|
tracing_state_functions = {
|
|
torch.jit.is_scripting: False,
|
|
torch.jit.is_tracing: False,
|
|
torch._C._get_tracing_state: None,
|
|
torch.fx._symbolic_trace.is_fx_tracing: False,
|
|
torch.onnx.is_in_onnx_export: False,
|
|
torch._dynamo.external_utils.is_compiling: True,
|
|
torch._utils.is_compiling: True,
|
|
torch.compiler.is_compiling: True,
|
|
torch.compiler.is_dynamo_compiling: True,
|
|
torch.nn.modules.activation._is_make_fx_tracing: False,
|
|
}
|
|
|
|
bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_overridable_functions():
|
|
from itertools import chain
|
|
|
|
from torch.overrides import get_overridable_functions as get_overridable_functions_
|
|
|
|
funcs = set(chain(*get_overridable_functions_().values()))
|
|
more = {
|
|
torch.ones,
|
|
torch.ones_like,
|
|
torch.zeros,
|
|
torch.zeros_like,
|
|
torch.empty,
|
|
torch.full,
|
|
}
|
|
funcs.update(more)
|
|
return funcs
|
|
|
|
|
|
class BaseTorchVariable(VariableTracker):
|
|
"""common base for all torch.* functions, classes, modules and other things"""
|
|
|
|
@classmethod
|
|
def create_with_source(cls, value, source):
|
|
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return cls(value, source=source)
|
|
|
|
def __init__(self, value, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def reconstruct(self, codegen):
|
|
try:
|
|
name = f"{self.value.__module__}.{self.value.__name__}"
|
|
except Exception:
|
|
name = f"torch_obj_{id(self.value)}"
|
|
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
|
|
codegen.extend_output(
|
|
codegen.setup_globally_cached(unique_var_name, self.value)
|
|
)
|
|
|
|
def as_proxy(self):
|
|
return self.value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def call_hasattr(self, tx: "InstructionTranslator", name):
|
|
result = hasattr(self.value, name)
|
|
return variables.ConstantVariable.create(result)
|
|
|
|
def can_constant_fold_through(self):
|
|
if self.value in constant_fold_functions:
|
|
return True
|
|
return getattr(self.value, "__module__", None) == "math"
|
|
|
|
|
|
class TorchCtxManagerClassVariable(BaseTorchVariable):
|
|
"""Points to a context manager class in torch.* that dynamo has implementations"""
|
|
|
|
def __repr__(self) -> str:
|
|
return f"TorchCtxManagerClassVariable({self.value})"
|
|
|
|
@staticmethod
|
|
def is_matching_cls(value):
|
|
# Unwrap if it's a functools.lru_cache wrapper
|
|
value = unwrap_if_wrapper(value)
|
|
# We can't do isinstance(value, type) check because some ctx managers
|
|
# are implemented as a function decorated by contextlib.contextmanager,
|
|
# E.g., torch._functorch.vmap.vmap_increment_nesting.
|
|
return (
|
|
# Context manager type or function with @contextmanager is callable
|
|
callable(value)
|
|
and (
|
|
hashable(value) # accesses value.__hash__()
|
|
and value in supported_ctx_manager_classes
|
|
)
|
|
)
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
DisabledSavedTensorsHooksVariable,
|
|
DualLevelContextManager,
|
|
FSDPParamGroupUseTrainingStateVariable,
|
|
GradIncrementNestingCtxManagerVariable,
|
|
GradInplaceRequiresGradCtxManagerVariable,
|
|
GradModeVariable,
|
|
InferenceModeVariable,
|
|
JvpIncrementNestingCtxManagerVariable,
|
|
SDPAKernelVariable,
|
|
SetFwdGradEnabledContextManager,
|
|
StreamVariable,
|
|
VmapIncrementNestingCtxManagerVariable,
|
|
)
|
|
|
|
if self.value is torch.no_grad:
|
|
if len(args) == 1 and isinstance(
|
|
args[0], variables.functions.BaseUserFunctionVariable
|
|
):
|
|
ctx = GradModeVariable.create(tx, False)
|
|
return ctx.call_function(tx, args, kwargs)
|
|
else:
|
|
return GradModeVariable.create(tx, False)
|
|
elif self.value is torch.enable_grad:
|
|
if len(args) == 1 and isinstance(
|
|
args[0], variables.functions.BaseUserFunctionVariable
|
|
):
|
|
ctx = GradModeVariable.create(tx, True)
|
|
return ctx.call_function(tx, args, kwargs)
|
|
return GradModeVariable.create(tx, True)
|
|
elif self.value is torch.set_grad_enabled and len(args) == 1:
|
|
return GradModeVariable.create(
|
|
tx, args[0].as_python_constant(), initialized=True
|
|
)
|
|
elif self.value is torch.inference_mode:
|
|
assert len(args) <= 1 and len(kwargs) == 0
|
|
inf_mode = args[0].as_python_constant() if len(args) == 1 else True
|
|
return InferenceModeVariable.create(tx, inf_mode)
|
|
elif inspect.isclass(self.value) and issubclass(self.value, torch.Stream):
|
|
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
|
|
|
|
return wrap_fx_proxy_cls(
|
|
StreamVariable,
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
self.value,
|
|
(),
|
|
{},
|
|
),
|
|
)
|
|
elif self.value in (
|
|
torch.amp.autocast_mode.autocast,
|
|
torch.cuda.amp.autocast,
|
|
torch.cpu.amp.autocast,
|
|
):
|
|
return AutocastModeVariable.create(self.value, args, kwargs)
|
|
elif self.value in (
|
|
torch.profiler.profile,
|
|
torch.profiler.record_function,
|
|
torch.autograd.profiler.profile,
|
|
torch.autograd.profiler.record_function,
|
|
):
|
|
warning_once(log, "Profiler function %s will be ignored", self.value)
|
|
return NullContextVariable()
|
|
elif self.value is torch._C.DisableTorchFunctionSubclass:
|
|
assert not (args or kwargs)
|
|
return TorchFunctionDisableVariable.create(tx)
|
|
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
|
|
assert len(args) == 2
|
|
return VmapIncrementNestingCtxManagerVariable.create(
|
|
tx,
|
|
args,
|
|
)
|
|
elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
|
|
assert len(args) == 0
|
|
return JvpIncrementNestingCtxManagerVariable.create(tx)
|
|
elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
|
|
assert len(args) == 1
|
|
return SetFwdGradEnabledContextManager.create(
|
|
tx,
|
|
[guard_if_dyn(x) for x in args],
|
|
)
|
|
elif self.value is torch.autograd.forward_ad.dual_level:
|
|
assert len(args) == 0
|
|
return DualLevelContextManager.create(tx)
|
|
elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
|
|
assert len(args) == 0
|
|
return GradIncrementNestingCtxManagerVariable.create(tx)
|
|
elif (
|
|
self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
|
|
):
|
|
assert len(args) == 1
|
|
return GradInplaceRequiresGradCtxManagerVariable.create(
|
|
tx,
|
|
[guard_if_dyn(x) for x in args],
|
|
)
|
|
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
|
|
assert len(args) == 1
|
|
return DisabledSavedTensorsHooksVariable.create(
|
|
tx, args[0].as_python_constant()
|
|
)
|
|
elif (
|
|
_fsdp_param_group is not None
|
|
and self.value is _fsdp_param_group.FSDPParamGroup.use_training_state
|
|
):
|
|
assert len(args) == 2
|
|
return FSDPParamGroupUseTrainingStateVariable.create(
|
|
tx, args[0], args[1].as_python_constant()
|
|
)
|
|
elif self.value is torch.nn.attention.sdpa_kernel:
|
|
assert len(args) == 1 or (len(kwargs) == 1 and "backends" in kwargs)
|
|
backends = args[0] if len(args) == 1 else kwargs["backends"]
|
|
return SDPAKernelVariable.create(tx, backends.as_python_constant())
|
|
elif self.value is torch.nn.attention._sdpa_kernel_variadic:
|
|
return SDPAKernelVariable.create(
|
|
tx, [arg.as_python_constant() for arg in args]
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
|
|
class TorchInGraphFunctionVariable(BaseTorchVariable):
|
|
"""Points to a torch function/method that should be put in FX graph"""
|
|
|
|
def __repr__(self) -> str:
|
|
return f"TorchInGraphFunctionVariable({self.value})"
|
|
|
|
def get_function(self):
|
|
return self.value
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _get_handlers():
|
|
"""Build a dict from function -> method to handle it so that we are O(1)
|
|
in terms of the number of function with special handling."""
|
|
handlers = {}
|
|
|
|
def register(*fns):
|
|
def _register(handler):
|
|
for fn in fns:
|
|
assert fn not in handlers, fn
|
|
handlers[fn] = handler
|
|
return handler
|
|
|
|
assert callable(fns[0])
|
|
return _register
|
|
|
|
from torch.backends.cuda import SDPAParams
|
|
|
|
from . import (
|
|
ConstantVariable,
|
|
DeterministicAlgorithmsVariable,
|
|
GradModeVariable,
|
|
StreamContextVariable,
|
|
SymNodeVariable,
|
|
TensorVariable,
|
|
UserDefinedObjectVariable,
|
|
)
|
|
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
|
|
|
|
@register(*tracing_state_functions)
|
|
def handle_tracing_state_functions(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
assert not args and not kwargs
|
|
# See: https://github.com/pytorch/pytorch/issues/110765
|
|
if self.value in (
|
|
torch._utils.is_compiling,
|
|
torch._dynamo.external_utils.is_compiling,
|
|
torch.compiler.is_compiling,
|
|
torch.compiler.is_dynamo_compiling,
|
|
):
|
|
tx.mark_inconsistent_side_effects()
|
|
return ConstantVariable.create(tracing_state_functions[self.value])
|
|
|
|
@register(torch.overrides.get_default_nowrap_functions.__wrapped__)
|
|
def handle_get_default_nowrap_functions(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
# [Note: __torch_function__] we return empty here because we restrict
|
|
# the set of functions that we trace __torch_function__ on to
|
|
# functions outside of the actual set. Implementing this properly will require implementing
|
|
# some variable types to track and compare tensor getset descriptors
|
|
return VariableTracker.build(
|
|
tx, torch.overrides.get_default_nowrap_functions()
|
|
)
|
|
|
|
@register(torch.ops.inductor.accumulate_grad_.default)
|
|
def handle_accumulate_grad_(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
return tx.inline_user_function_return(
|
|
VariableTracker.build(tx, polyfills.accumulate_grad), args, kwargs
|
|
)
|
|
|
|
@register(math.radians)
|
|
def handle_radians(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
if not check_unspec_or_constant_args(args, kwargs):
|
|
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
|
|
return tx.inline_user_function_return(
|
|
VariableTracker.build(tx, polyfills.radians), args, kwargs
|
|
)
|
|
|
|
@register(torch.is_tensor, torch.overrides.is_tensor_like)
|
|
def handle_is_tensor(self, tx: "InstructionTranslator", arg):
|
|
if isinstance(arg, TensorVariable) or (
|
|
self.value is torch.overrides.is_tensor_like
|
|
and isinstance(arg, UserDefinedObjectVariable)
|
|
and hasattr(arg.value, "__torch_function__")
|
|
):
|
|
return ConstantVariable.create(True)
|
|
else:
|
|
return ConstantVariable.create(False)
|
|
|
|
@register(
|
|
torch.is_floating_point,
|
|
torch.is_complex,
|
|
)
|
|
def handle_is_floating_point(self, tx: "InstructionTranslator", input):
|
|
input_arg = input
|
|
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
|
|
if self.value is torch.is_floating_point:
|
|
return ConstantVariable.create(input_arg.dtype.is_floating_point)
|
|
elif self.value is torch.is_complex:
|
|
return ConstantVariable.create(input_arg.dtype.is_complex)
|
|
else:
|
|
raise AssertionError(f"calling {self.value}")
|
|
|
|
@register(torch.numel)
|
|
def handle_numel(self, tx: "InstructionTranslator", input):
|
|
if isinstance(input, TensorVariable) and input.valid_size():
|
|
return ConstantVariable.create(product(input.size))
|
|
elif isinstance(input, TensorVariable):
|
|
# Workaround dynamic shapes issue
|
|
return input.call_method(tx, "numel", [], {})
|
|
|
|
@register(torch.compile)
|
|
def handle_torch_compile(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
if len(args) == 1:
|
|
# torch.compile is a no-op in dynamo
|
|
return args[0]
|
|
|
|
unimplemented("torch.compile is used as a decorator in the compiled frame")
|
|
|
|
@register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
|
|
def handle_tensor_size_rewrites(self, tx: "InstructionTranslator", input):
|
|
assert isinstance(input, TensorVariable)
|
|
return input.call_method(tx, "size", [], {})
|
|
|
|
@register(
|
|
torch.nn.modules.utils._single,
|
|
torch.nn.modules.utils._pair,
|
|
torch.nn.modules.utils._triple,
|
|
torch.nn.modules.utils._quadruple,
|
|
torch.nn.modules.utils._ntuple,
|
|
)
|
|
def handle_ntuple(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
return self._call_ntuple(tx, args, kwargs)
|
|
|
|
@register(torch.is_grad_enabled)
|
|
def handle_is_grad_enabled(self, tx):
|
|
install_guard(GradModeVariable._guards_singleton)
|
|
return ConstantVariable.create(torch.is_grad_enabled())
|
|
|
|
@register(torch.use_deterministic_algorithms)
|
|
def handle_use_deterministic_algorithms(
|
|
self, tx: "InstructionTranslator", mode, warn_only=False
|
|
):
|
|
if warn_only and warn_only.as_python_constant():
|
|
unimplemented("torch.use_deterministic_algorithms(warn_only=True)")
|
|
return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())
|
|
|
|
@register(torch.are_deterministic_algorithms_enabled)
|
|
def handle_are_deterministic_algorithms_enabled(self, tx):
|
|
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
|
|
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
|
|
|
|
@register(torch._C._is_torch_function_enabled)
|
|
def handle_is_torch_function_enabled(self, tx):
|
|
install_guard(TorchFunctionDisableVariable._guards_singleton)
|
|
return ConstantVariable.create(tx.output.torch_function_enabled)
|
|
|
|
@register(
|
|
torch.overrides.has_torch_function,
|
|
torch.overrides.has_torch_function_variadic,
|
|
torch.overrides.has_torch_function_unary,
|
|
)
|
|
def handle_has_torch_function(self, tx: "InstructionTranslator", *args):
|
|
elems = (
|
|
args[0].unpack_var_sequence(tx)
|
|
if len(args) == 1 and isinstance(args[0], TupleVariable)
|
|
else args
|
|
)
|
|
return ConstantVariable.create(
|
|
any(has_torch_function(x) for x in elems),
|
|
)
|
|
|
|
@register(
|
|
*dict.fromkeys( # remove duplicates
|
|
device_interface.stream
|
|
for _, device_interface in get_registered_device_interfaces()
|
|
)
|
|
)
|
|
def handle_device_interface_stream(self, tx: "InstructionTranslator", stream):
|
|
return StreamContextVariable.create(tx, stream)
|
|
|
|
@register(torch.from_numpy)
|
|
def handle_from_numpy(self, tx: "InstructionTranslator", *args):
|
|
if not config.trace_numpy:
|
|
unimplemented("torch.from_numpy. config.trace_numpy is False")
|
|
if not np:
|
|
unimplemented("torch.from_numpy. NumPy is not available")
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=TensorVariable,
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.as_tensor,
|
|
*proxy_args_kwargs(args, {}),
|
|
),
|
|
example_value=None,
|
|
)
|
|
|
|
@register(torch.jit.annotate)
|
|
def handle_jit_annotate(self, tx: "InstructionTranslator", the_type, the_value):
|
|
return the_value
|
|
|
|
@register(torch.backends.cudnn.is_acceptable)
|
|
def handle_cudnn_is_acceptable(
|
|
self, tx: "InstructionTranslator", tensor, *extra
|
|
):
|
|
# is_acceptable(tensor) returns true if
|
|
# (a) tensor dtype/device are supported by cudnn
|
|
# (b) cudnn is available
|
|
# (c) some initialization has completed
|
|
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
|
|
assert not extra, "Expect 1 input to cudnn.is_acceptable"
|
|
assert isinstance(
|
|
tensor, TensorVariable
|
|
), "Expect input to cudnn.is_acceptable to be a tensor"
|
|
tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
|
|
return ConstantVariable.create(
|
|
torch.backends.cudnn.is_acceptable(tensor_inp)
|
|
)
|
|
|
|
@register(torch.utils.hooks.BackwardHook)
|
|
def handle_backward_hook(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
return variables.BackwardHookVariable.create(tx, *args, **kwargs)
|
|
|
|
@register(torch.nn.Parameter)
|
|
def handle_parameter(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
return self.call_nn_parameter(tx, *args, **kwargs)
|
|
|
|
@register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
|
|
def handle_sym_size(self_, tx, self, dim=None):
|
|
# we see this when retracing already traced code
|
|
if dim is not None:
|
|
return self.call_method(tx, "size", [dim], {})
|
|
|
|
@register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
|
|
def handle_sym_stride(self_, tx, self, dim=None):
|
|
if dim is not None:
|
|
return self.call_method(tx, "stride", [dim], {})
|
|
|
|
@register(torch.addcdiv)
|
|
def handle_addcdiv(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
|
|
# decompose addcdiv into constituent ops, prevents a graph break due to converting
|
|
# value to a scalar
|
|
result = TorchInGraphFunctionVariable(torch.div).call_function(
|
|
tx, [*args[1:]], {}
|
|
)
|
|
result = TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [result, kwargs["value"]], {}
|
|
)
|
|
return TorchInGraphFunctionVariable(torch.add).call_function(
|
|
tx, [args[0], result], {}
|
|
)
|
|
|
|
@register(torch._foreach_lerp_)
|
|
def handle_inplace_foreach_lerp_scalar(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
if len(args) == 3 and not isinstance(args[2], ListVariable) and not kwargs:
|
|
return tx.inline_user_function_return(
|
|
VariableTracker.build(tx, polyfills.foreach_lerp_inplace),
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
@register(torch._foreach_pow)
|
|
def handle_foreach_pow_scalar(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
# In eager it's more performant to call item() from within the C op implementation
|
|
# in compile, it's more performant to not graph break.
|
|
if len(args) == 2 and isinstance(args[0], TensorVariable) and not kwargs:
|
|
return tx.inline_user_function_return(
|
|
VariableTracker.build(tx, polyfills.foreach_pow_scalar),
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
@register(torch._assert)
|
|
def handle_assert(self, tx: "InstructionTranslator", condition, message):
|
|
if (condition.is_python_constant() and condition.as_python_constant()) or (
|
|
isinstance(condition, variables.SymNodeVariable)
|
|
and condition.evaluate_expr()
|
|
):
|
|
return ConstantVariable(None)
|
|
|
|
@register(SDPAParams)
|
|
def handle_sdpa_params(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch._C._SDPAParams,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
param_vars=args,
|
|
)
|
|
|
|
if DistributedVariable.is_available():
|
|
from torch.distributed.distributed_c10d import (
|
|
_get_group_size_by_name,
|
|
_get_group_tag,
|
|
_rank_not_in_group,
|
|
_resolve_group_name_by_ranks_and_tag,
|
|
get_process_group_ranks,
|
|
)
|
|
from torch.distributed.tensor import DTensor
|
|
|
|
@register(
|
|
_get_group_size_by_name,
|
|
_get_group_tag,
|
|
_rank_not_in_group,
|
|
get_process_group_ranks,
|
|
_resolve_group_name_by_ranks_and_tag,
|
|
)
|
|
def handle_constant_processgroup_functions(
|
|
self, tx: "InstructionTranslator", *args
|
|
):
|
|
# because the input is a "ProcessGroupVariable", we'll be guarding on its
|
|
# ID_MATCH based on how it was constructed.
|
|
|
|
# We desugar it at trace-time into ranks by directly calling util
|
|
# bake the result into the trace
|
|
if len(args) == 1:
|
|
# group or group name
|
|
assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
|
|
elif len(args) == 2:
|
|
# ranks + tag
|
|
assert isinstance(args[0], ListVariable) and isinstance(
|
|
args[1], ConstantVariable
|
|
)
|
|
else:
|
|
raise AssertionError(
|
|
f"Invalid group value ({args}) for constant pg "
|
|
f"function {self.value}"
|
|
)
|
|
args_as_value = [arg.as_python_constant() for arg in args]
|
|
invocation_result = self.value(*args_as_value)
|
|
|
|
# Note - while we *could* cook up sources around invocations, like a FunctionSource
|
|
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
|
|
# guard propagation via options is the best we can do.
|
|
return VariableTracker.build(tx, invocation_result)
|
|
|
|
@register(DTensor.from_local)
|
|
def handle_from_local(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
|
|
# and rewrite args to have only proxyable args, then insert call_function
|
|
args_as_value = [x.as_python_constant() for x in args[1:]]
|
|
kwargs_as_value = {
|
|
k: v.as_python_constant()
|
|
for k, v in kwargs.items()
|
|
if k not in ["shape", "stride"]
|
|
}
|
|
kwargs_to_be_proxied = {
|
|
k: kwargs[k] for k in ["shape", "stride"] if k in kwargs
|
|
}
|
|
|
|
def fn_with_prim_types(x, shape=None, stride=None):
|
|
return self.value(
|
|
x, *args_as_value, **kwargs_as_value, shape=shape, stride=stride
|
|
)
|
|
|
|
# attach the same function name for better debugging
|
|
fn_with_prim_types.__name__ = "prim " + self.value.__name__
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
fn_with_prim_types,
|
|
*proxy_args_kwargs(
|
|
[args[0]],
|
|
kwargs_to_be_proxied,
|
|
),
|
|
),
|
|
)
|
|
|
|
@register(torch.nested.nested_tensor)
|
|
def handle_nested_tensor(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
tensor_list=None,
|
|
*args,
|
|
layout=None,
|
|
**kwargs,
|
|
):
|
|
from .lists import BaseListVariable
|
|
|
|
if layout and layout.as_python_constant() == torch.strided:
|
|
unimplemented("torch.compile does not support strided NestedTensor")
|
|
if not isinstance(tensor_list, BaseListVariable):
|
|
unimplemented("nested_tensor with non-list input")
|
|
|
|
@register(torch.nn.functional.one_hot)
|
|
def handle_one_hot(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
if len(args) + len(kwargs) == 1 or (
|
|
len(args) == 2
|
|
and args[1].is_python_constant()
|
|
and args[1].as_python_constant() == -1
|
|
):
|
|
unimplemented(
|
|
"torch.nn.functional.one_hot with data-dependent output shape"
|
|
)
|
|
|
|
@register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
|
|
def handle_guard_size_oblivious(self, tx: "InstructionTranslator", expr):
|
|
if isinstance(expr, SymNodeVariable):
|
|
# TODO: this probably should be folded somewhere else but I'm not sure where
|
|
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
|
|
return variables.ConstantVariable.create(
|
|
torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
|
|
expr.sym_num
|
|
)
|
|
)
|
|
elif isinstance(expr, ConstantVariable):
|
|
return expr
|
|
|
|
@register(torch._C._autograd._unsafe_set_version_counter)
|
|
def handle_unsafe_set_version_counter(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
from ..tensor_version_op import _unsafe_set_version_counter
|
|
|
|
return TorchInGraphFunctionVariable(
|
|
_unsafe_set_version_counter
|
|
).call_function(tx, [*args], kwargs)
|
|
|
|
@register(torch.tensor)
|
|
def handle_torch_tensor(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
def check_any_unspec(x):
|
|
# NB: This includes UnspecializedPythonVariable
|
|
if isinstance(x, (TensorVariable, SymNodeVariable)):
|
|
return True
|
|
elif isinstance(x, (ListVariable, TupleVariable)):
|
|
return any(check_any_unspec(y) for y in x.items)
|
|
# TODO: there maybe other recursive structures you need to
|
|
# check
|
|
else:
|
|
return False
|
|
|
|
data_arg = None
|
|
if args:
|
|
data_arg = args[0]
|
|
elif "data" in kwargs:
|
|
data_arg = kwargs["data"]
|
|
|
|
# NB: OK to pass torch.tensor(tensor), this will trace fine
|
|
if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
|
|
# This is slower and less canonical, so only use it if we
|
|
# have to
|
|
return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
|
|
tx, [*args], kwargs
|
|
)
|
|
|
|
@register(torch._C._pop_torch_function_stack)
|
|
def handle_pop_torch_function(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
assert not args and not kwargs
|
|
if not tx.symbolic_torch_function_state.mode_stack:
|
|
raise unimplemented("Popping from an empty torch function mode stack")
|
|
TorchFunctionModeStackVariable.register_mutation(tx)
|
|
return tx.symbolic_torch_function_state.pop_torch_function_mode()
|
|
|
|
@register(torch._C._push_on_torch_function_stack)
|
|
def handle_push_torch_function(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
assert len(args) == 1 and not kwargs
|
|
TorchFunctionModeStackVariable.register_mutation(tx)
|
|
tx.symbolic_torch_function_state.push_torch_function_mode(args[0])
|
|
return ConstantVariable.create(None)
|
|
|
|
@register(torch._C._len_torch_function_stack)
|
|
def handle_len_torch_function(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
assert not args and not kwargs
|
|
return ConstantVariable.create(
|
|
len(tx.symbolic_torch_function_state.mode_stack)
|
|
)
|
|
|
|
@register(torch._C._get_function_stack_at)
|
|
def handle_get_stack_at(self, tx: "InstructionTranslator", *args, **kwargs):
|
|
assert len(args) == 1 and not kwargs
|
|
ind = args[0].as_python_constant()
|
|
assert ind >= 0 and ind < len(tx.symbolic_torch_function_state.mode_stack)
|
|
return tx.symbolic_torch_function_state.mode_stack[ind]
|
|
|
|
@register(torch.set_default_device)
|
|
def handle_set_default_device(
|
|
self, tx: "InstructionTranslator", *args, **kwargs
|
|
):
|
|
# Today this is inserted in the graph, once TF mode
|
|
# handling is complete, we can trace the device context
|
|
# like any other TF mode and remove this special handling
|
|
# Insert the TF mode representing the device context at
|
|
# the bottom of the stack to match the eager semantics
|
|
# Running the graph will ensure that the DeviceContext mode is
|
|
# at the correct position in the stack
|
|
TorchFunctionModeStackVariable.register_mutation(tx)
|
|
if args[0].is_python_constant() and args[0].as_python_constant() is None:
|
|
TorchFunctionModeStackVariable.clear_default_device(tx)
|
|
else:
|
|
TorchFunctionModeStackVariable.register_device_context_insertion(tx)
|
|
|
|
return ConstantVariable.create(None)
|
|
|
|
return handlers
|
|
|
|
def call_function(
|
|
self,
|
|
tx: "InstructionTranslator",
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import ConstantVariable, SymNodeVariable, TensorVariable
|
|
from .builder import wrap_fx_proxy
|
|
|
|
if self.torch_function_override_enabled(tx, args, kwargs):
|
|
return dispatch_torch_function(tx, self, args, kwargs)
|
|
|
|
if self.can_constant_fold_through() and check_unspec_or_constant_args(
|
|
args, kwargs
|
|
):
|
|
# constant fold functions need to be guarded.
|
|
if self.value in constant_fold_functions_need_guards:
|
|
source = CallFunctionNoArgsSource(self.source)
|
|
install_guard(source.make_guard(GuardBuilder.EQUALS_MATCH))
|
|
# constant fold
|
|
return ConstantVariable.create(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
)
|
|
|
|
if self.is_tensor_method():
|
|
return self.call_tensor_method(tx, args, kwargs)
|
|
|
|
special_handler = self._get_handlers().get(self.value)
|
|
if special_handler:
|
|
result = special_handler(self, tx, *args, **kwargs)
|
|
if result:
|
|
return result
|
|
|
|
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
|
|
|
|
all_ints_or_floats = all(
|
|
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
|
|
for x in args
|
|
)
|
|
if (
|
|
getattr(self.value, "__module__", "") == "torch"
|
|
and self.value.__name__ in bin_ops
|
|
and any_symints_or_symfloats
|
|
and all_ints_or_floats
|
|
):
|
|
msg = f"""\
|
|
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
|
|
To support this behavior, we need to allow const-propping tensors that store symint data.
|
|
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
|
|
"""
|
|
log.warning(msg)
|
|
unimplemented(msg)
|
|
|
|
# TODO(voz): Replace w/ dynamic shape rewrite table.
|
|
# Ideally, we would be able to do this at ctor time, but alas we need a combination
|
|
# of value + args to determine this.
|
|
fn_ = self.value
|
|
if any_symints_or_symfloats:
|
|
torch_sym_op = f"_sym_{self.value.__name__}"
|
|
if getattr(self.value, "__module__", None) == "math" and hasattr(
|
|
torch, torch_sym_op
|
|
):
|
|
fn_ = getattr(torch, torch_sym_op)
|
|
|
|
fake_out_shape = None
|
|
if "out" in kwargs and isinstance(kwargs["out"], variables.TensorVariable):
|
|
# Calling fake tensor propagation can mutate the out= tensor in
|
|
# tx.output.tracked_fakes. tracked_fakes are used to apply
|
|
# symbolic_shape guards. Mutating them destroys the information
|
|
# prior to tracing, which is essential for creating right
|
|
# guards. So save the shape now, and check later if it has
|
|
# changed. If it has, graph break.
|
|
fake_out_shape = kwargs["out"].proxy.node.meta["example_value"].shape
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
fn_,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
),
|
|
)
|
|
|
|
if (
|
|
isinstance(tensor_variable, TensorVariable)
|
|
and "requires_grad" in kwargs
|
|
and kwargs["requires_grad"].as_python_constant()
|
|
):
|
|
unimplemented(
|
|
"""factory functions that return tensors that require grad are not supported.
|
|
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
|
|
)
|
|
|
|
if "out" in kwargs and not (
|
|
isinstance(kwargs["out"], variables.ConstantVariable)
|
|
and kwargs["out"].as_python_constant() is None
|
|
):
|
|
# out variants of torch operators like torch.sort and torch.sigmoid
|
|
# mutate the tensors in the out field.
|
|
#
|
|
# However, it's non-trivial to update all references of the old
|
|
# `TensorVariable` to the new one returned (`result_var`), so we
|
|
# take the conservative approach to graph break on size changes, and
|
|
# assume other cases can fall through soundly.
|
|
#
|
|
# Note that although these tensor variablels would hold different
|
|
# proxies, the in-place mutation semantics is preserved in the FX
|
|
# graph, so we won't have correctness issues.
|
|
if isinstance(tensor_variable, TupleVariable):
|
|
assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
|
|
for out_tensor, result_tensor in zip(
|
|
kwargs["out"].items, tensor_variable.items
|
|
):
|
|
if (
|
|
isinstance(out_tensor, variables.TensorVariable)
|
|
and isinstance(result_tensor, variables.TensorVariable)
|
|
and out_tensor._size
|
|
!= result_tensor._size # we actually want to compare None values here
|
|
):
|
|
# It's hard to get out variants with resizing on graph inputs work
|
|
# properly across dynamo/aot/inductor, just fall back.
|
|
unimplemented("out variants with resizing on graph inputs")
|
|
elif isinstance(tensor_variable, TensorVariable):
|
|
assert isinstance(kwargs["out"], TensorVariable)
|
|
assert "example_value" in kwargs["out"].proxy.node.meta
|
|
fake_tensor = tensor_variable.proxy.node.meta["example_value"]
|
|
fake_out = kwargs["out"].proxy.node.meta["example_value"]
|
|
if fake_out_shape != fake_tensor.shape:
|
|
# It's hard to get out variants with resizing on graph inputs work
|
|
# properly across dynamo/aot/inductor, just fall back.
|
|
unimplemented("out variants with resizing on graph inputs")
|
|
if not torch._prims_common.is_contiguous(fake_out):
|
|
# It's difficult to handle strides correctly in functionalization
|
|
# when calling an out= op with a non-contiguous out argument
|
|
unimplemented(
|
|
"out= op was called where output tensor was non-contiguous"
|
|
)
|
|
elif (
|
|
isinstance(tensor_variable, ConstantVariable)
|
|
and tensor_variable.value is None
|
|
):
|
|
# Handle out-variant custom ops that return None.
|
|
if isinstance(kwargs["out"], TensorVariable):
|
|
assert "example_value" in kwargs["out"].proxy.node.meta
|
|
fake_out = kwargs["out"].proxy.node.meta["example_value"]
|
|
if not torch._prims_common.is_contiguous(fake_out):
|
|
# It's difficult to handle strides correctly in functionalization
|
|
# when calling an out= op with a non-contiguous out argument
|
|
unimplemented(
|
|
"out= op was called where output tensor was non-contiguous"
|
|
)
|
|
elif isinstance(kwargs["out"], ListVariable):
|
|
for idx, x in enumerate(kwargs["out"].items):
|
|
assert "example_value" in x.proxy.node.meta # type: ignore[attr-defined]
|
|
fake_out = x.proxy.node.meta["example_value"] # type: ignore[attr-defined]
|
|
if not torch._prims_common.is_contiguous(fake_out):
|
|
# It's difficult to handle strides correctly in functionalization
|
|
# when calling an out= op with a non-contiguous out argument
|
|
unimplemented(
|
|
"out= op was called where some of the output tensors were non-contiguous"
|
|
)
|
|
else:
|
|
unimplemented(f"out variant of {type(kwargs['out'])}")
|
|
|
|
return tensor_variable
|
|
|
|
def _call_ntuple(self, tx: "InstructionTranslator", args, kwargs):
|
|
"""inline behavior of torch.nn.modules.utils._ntuple"""
|
|
if self.value is torch.nn.modules.utils._ntuple:
|
|
count = args[0].as_python_constant()
|
|
else:
|
|
count = self.value.__closure__[0].cell_contents
|
|
assert isinstance(count, int)
|
|
assert not kwargs
|
|
|
|
def handle_ntuple(value):
|
|
if value.has_unpack_var_sequence(tx):
|
|
return variables.TupleVariable(
|
|
list(value.unpack_var_sequence(tx)),
|
|
)
|
|
elif value.is_python_constant():
|
|
# constant prop through it
|
|
return variables.ConstantVariable.create(
|
|
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
|
|
)
|
|
else:
|
|
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
|
|
|
|
if self.value is torch.nn.modules.utils._ntuple:
|
|
return variables.LambdaVariable(handle_ntuple)
|
|
else:
|
|
return handle_ntuple(args[0])
|
|
|
|
@classmethod
|
|
def call_nn_parameter(cls, tx, data=None, requires_grad=True):
|
|
"""A call to torch.nn.Parameter() gets lifted to before the graph"""
|
|
if tx.export:
|
|
unimplemented("nn parameter construction not supported with export")
|
|
|
|
if isinstance(requires_grad, variables.VariableTracker):
|
|
try:
|
|
requires_grad = requires_grad.as_python_constant()
|
|
except NotImplementedError:
|
|
unimplemented("Parameter(requires_grad=...) not constant")
|
|
|
|
if not isinstance(data, variables.TensorVariable):
|
|
unimplemented(f"Parameter(data={data}) not implemented")
|
|
|
|
# this results in cleaner graphs, but only works for inputs
|
|
if data.source:
|
|
return cls._nn_param_via_prefix_insert(tx, data, requires_grad)
|
|
|
|
if is_traceable_wrapper_subclass_type(data.class_type):
|
|
unimplemented("Parameter constructor with tensor subclass NYI")
|
|
|
|
if not can_convert_to_tracable_parameter():
|
|
unimplemented("Workaround for issues with nn_parameter construction")
|
|
|
|
try:
|
|
shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
|
|
dtype = data.var_getattr(tx, "dtype").as_python_constant()
|
|
device = data.var_getattr(tx, "device").as_python_constant()
|
|
except NotImplementedError as e:
|
|
unimplemented(f"Parameter not python_constant: {e}")
|
|
|
|
placeholder = tx.output.synthetic_graph_input(
|
|
new_parameter_placeholder, [shape, dtype, device, requires_grad]
|
|
)
|
|
if data.requires_grad:
|
|
data = data.call_method(tx, "detach", [], {})
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
result = wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
tracable_create_parameter,
|
|
(data.as_proxy(), placeholder.as_proxy()),
|
|
{},
|
|
),
|
|
)
|
|
assert isinstance(result, variables.TensorVariable)
|
|
result.class_type = torch.nn.Parameter
|
|
|
|
# TODO(jansel/bdhirsh) - There is some issue with
|
|
# tracable_create_paramter. It does not seem to use the right
|
|
# grad_enabled. Since this is parameter, we can just override the
|
|
# has_grad_fn field to False to workaround the issue.
|
|
result.has_grad_fn = False
|
|
|
|
# In reconstruct() should use the original parameter. The one returned by the graph will be an alias.
|
|
result.source = placeholder.source
|
|
|
|
# TODO(jansel): if the new param falls out of scope, currently it won't get freed until
|
|
# the end of the graph. We should fix this.
|
|
return result
|
|
|
|
@staticmethod
|
|
def _nn_param_via_prefix_insert(tx: "InstructionTranslator", data, requires_grad):
|
|
# Alternate version if we have a .source
|
|
varname = tx.output.new_var()
|
|
|
|
# construct the nn.Parmeter before the graph save it to varname
|
|
cg = PyCodegen(tx)
|
|
cg.add_push_null(lambda: cg.load_import_from("torch.nn", "Parameter"))
|
|
cg(data.source)
|
|
cg(variables.ConstantVariable(requires_grad))
|
|
cg.call_function(2, False)
|
|
cg.store(varname)
|
|
tx.output.pregraph_bytecode.extend(cg.get_instructions())
|
|
|
|
data_node = data.as_proxy().node
|
|
if data_node.op not in ("placeholder", "get_attr"):
|
|
unimplemented(
|
|
"Unexpected type of data placeholder op for parameter construction"
|
|
)
|
|
|
|
# add the newly constructed nn.Parameter as a graph input
|
|
source = SyntheticLocalSource(varname)
|
|
example_value = torch.nn.Parameter(
|
|
tx.output.example_value_from_input_node(data.as_proxy().node)
|
|
)
|
|
result = VariableTracker.build(tx, example_value, source)
|
|
# No need to guard on this since we already guarded on `data`.
|
|
# These guards would fail since varname doesn't exist until after the function starts
|
|
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
|
|
source
|
|
)
|
|
return result
|
|
|
|
def call_tensor_method(self, tx, args, kwargs):
|
|
return args[0].call_method(tx, self.get_function().__name__, args[1:], kwargs)
|
|
|
|
def is_tensor_method(self):
|
|
return (
|
|
inspect.ismethoddescriptor(self.get_function())
|
|
and hasattr(self.get_function(), "__objclass__")
|
|
and self.get_function().__objclass__ == torch._C.TensorBase
|
|
) or self.get_function() is torch.Tensor.__contains__
|
|
|
|
def torch_function_override_enabled(self, tx, args, kwargs):
|
|
return (
|
|
self.get_function() in get_overridable_functions()
|
|
or isinstance(
|
|
self.get_function(),
|
|
(torch._ops.OpOverload, torch._ops.OpOverloadPacket),
|
|
)
|
|
) and can_dispatch_torch_function(tx, args, kwargs)
|