mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
59 lines
1.8 KiB
Python
59 lines
1.8 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import caffe2.python._import_c_extension as C
|
|
|
|
|
|
class Transformer(object):
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def runTransform(cls, transform_name, net):
|
|
pb = net.Proto().SerializeToString()
|
|
if C.transform_exists(transform_name):
|
|
output = C.run_transform(transform_name, pb)
|
|
elif C.workspace_transform_exists(transform_name):
|
|
output = C.run_workspace_transform(transform_name, pb)
|
|
else:
|
|
raise AttributeError('Transformation {} not found.'.format(transform_name))
|
|
net.Proto().ParseFromString(output)
|
|
|
|
def __getattr__(self, transform_name):
|
|
return lambda net : self.runTransform(transform_name, net)
|
|
|
|
|
|
def fuseNNPACKConvRelu(net):
|
|
net.Proto().ParseFromString(
|
|
C.transform_fuseNNPACKConvRelu(net.Proto().SerializeToString())
|
|
)
|
|
|
|
|
|
def optimizeForMKLDNN(net, training_mode = False):
|
|
net.Proto().ParseFromString(
|
|
C.transform_optimizeForMKLDNN(net.Proto().SerializeToString(), training_mode)
|
|
)
|
|
|
|
|
|
def fuseConvBN(net):
|
|
net.Proto().ParseFromString(
|
|
C.transform_fuseConvBN(net.Proto().SerializeToString())
|
|
)
|