mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55320 Test Plan: Sandcastle Reviewed By: ngimel Differential Revision: D27572577 fbshipit-source-id: 97710fd2bb1303006b05828a0d1343b0b59ccb03
232 lines
7.0 KiB
C++
232 lines
7.0 KiB
C++
#include <ATen/Parallel.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <c10/util/irange.h>
|
|
#include <torch/csrc/deploy/deploy.h>
|
|
#include <torch/script.h>
|
|
#include <torch/torch.h>
|
|
|
|
#include <future>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
int main(int argc, char* argv[]) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
int rc = RUN_ALL_TESTS();
|
|
return rc;
|
|
}
|
|
|
|
void compare_torchpy_jit(const char* model_filename, const char* jit_filename) {
|
|
// Test
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.load_package(model_filename);
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
at::IValue eg;
|
|
{
|
|
auto I = p.acquire_session();
|
|
eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
|
|
}
|
|
|
|
at::Tensor output = model(eg.toTuple()->elements()).toTensor();
|
|
|
|
// Reference
|
|
auto ref_model = torch::jit::load(jit_filename);
|
|
at::Tensor ref_output =
|
|
ref_model.forward(eg.toTuple()->elements()).toTensor();
|
|
|
|
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
|
|
}
|
|
|
|
const char* simple = "torch/csrc/deploy/example/generated/simple";
|
|
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
|
|
|
|
const char* path(const char* envname, const char* path) {
|
|
const char* e = getenv(envname);
|
|
return e ? e : path;
|
|
}
|
|
|
|
TEST(TorchpyTest, LoadLibrary) {
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.load_package(
|
|
path("LOAD_LIBRARY", "torch/csrc/deploy/example/generated/load_library"));
|
|
auto model = p.load_pickle("fn", "fn.pkl");
|
|
model({});
|
|
}
|
|
|
|
TEST(TorchpyTest, SimpleModel) {
|
|
compare_torchpy_jit(path("SIMPLE", simple), path("SIMPLE_JIT", simple_jit));
|
|
}
|
|
|
|
TEST(TorchpyTest, ResNet) {
|
|
compare_torchpy_jit(
|
|
path("RESNET", "torch/csrc/deploy/example/generated/resnet"),
|
|
path("RESNET_JIT", "torch/csrc/deploy/example/generated/resnet_jit"));
|
|
}
|
|
|
|
TEST(TorchpyTest, Movable) {
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::ReplicatedObj obj;
|
|
{
|
|
auto I = m.acquire_one();
|
|
auto model =
|
|
I.global("torch.nn", "Module")(std::vector<torch::deploy::Obj>());
|
|
obj = I.create_movable(model);
|
|
}
|
|
obj.acquire_session();
|
|
}
|
|
|
|
TEST(TorchpyTest, MultiSerialSimpleModel) {
|
|
torch::deploy::InterpreterManager manager(3);
|
|
torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
|
|
|
|
auto input = torch::ones({10, 20});
|
|
size_t ninterp = 3;
|
|
std::vector<at::Tensor> outputs;
|
|
|
|
for (const auto i : c10::irange(ninterp)) {
|
|
outputs.push_back(model({input.alias()}).toTensor());
|
|
}
|
|
|
|
// Generate reference
|
|
auto ref_output = ref_model.forward({input.alias()}).toTensor();
|
|
|
|
// Compare all to reference
|
|
for (const auto i : c10::irange(ninterp)) {
|
|
ASSERT_TRUE(ref_output.equal(outputs[i]));
|
|
}
|
|
|
|
// test kwargs api with args
|
|
std::vector<c10::IValue> args;
|
|
args.emplace_back(input);
|
|
std::unordered_map<std::string, c10::IValue> kwargs_empty;
|
|
auto jit_output_args = model.call_kwargs(args, kwargs_empty).toTensor();
|
|
ASSERT_TRUE(ref_output.equal(jit_output_args));
|
|
|
|
// and with kwargs only
|
|
std::unordered_map<std::string, c10::IValue> kwargs;
|
|
kwargs["input"] = input;
|
|
auto jit_output_kwargs = model.call_kwargs(kwargs).toTensor();
|
|
ASSERT_TRUE(ref_output.equal(jit_output_kwargs));
|
|
}
|
|
|
|
TEST(TorchpyTest, ThreadedSimpleModel) {
|
|
size_t nthreads = 3;
|
|
torch::deploy::InterpreterManager manager(nthreads);
|
|
|
|
torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
auto ref_model = torch::jit::load(path("SIMPLE_JIT", simple_jit));
|
|
|
|
auto input = torch::ones({10, 20});
|
|
|
|
std::vector<at::Tensor> outputs;
|
|
|
|
std::vector<std::future<at::Tensor>> futures;
|
|
for (const auto i : c10::irange(nthreads)) {
|
|
futures.push_back(std::async(std::launch::async, [&model]() {
|
|
auto input = torch::ones({10, 20});
|
|
for (int i = 0; i < 100; ++i) {
|
|
model({input.alias()}).toTensor();
|
|
}
|
|
auto result = model({input.alias()}).toTensor();
|
|
return result;
|
|
}));
|
|
}
|
|
for (const auto i : c10::irange(nthreads)) {
|
|
outputs.push_back(futures[i].get());
|
|
}
|
|
|
|
// Generate reference
|
|
auto ref_output = ref_model.forward({input.alias()}).toTensor();
|
|
|
|
// Compare all to reference
|
|
for (const auto i : c10::irange(nthreads)) {
|
|
ASSERT_TRUE(ref_output.equal(outputs[i]));
|
|
}
|
|
}
|
|
|
|
TEST(TorchpyTest, ThrowsSafely) {
|
|
// See explanation in deploy.h
|
|
torch::deploy::InterpreterManager manager(3);
|
|
EXPECT_THROW(manager.load_package("some garbage path"), c10::Error);
|
|
|
|
torch::deploy::Package p = manager.load_package(path("SIMPLE", simple));
|
|
EXPECT_THROW(p.load_pickle("some other", "garbage path"), c10::Error);
|
|
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
EXPECT_THROW(model(at::IValue("unexpected input")), c10::Error);
|
|
}
|
|
|
|
TEST(TorchpyTest, AcquireMultipleSessionsInTheSamePackage) {
|
|
torch::deploy::InterpreterManager m(1);
|
|
|
|
torch::deploy::Package p = m.load_package(path("SIMPLE", simple));
|
|
auto I = p.acquire_session();
|
|
|
|
auto I1 = p.acquire_session();
|
|
}
|
|
|
|
TEST(TorchpyTest, AcquireMultipleSessionsInDifferentPackages) {
|
|
torch::deploy::InterpreterManager m(1);
|
|
|
|
torch::deploy::Package p = m.load_package(path("SIMPLE", simple));
|
|
auto I = p.acquire_session();
|
|
|
|
torch::deploy::Package p1 = m.load_package(
|
|
path("RESNET", "torch/csrc/deploy/example/generated/resnet"));
|
|
auto I1 = p1.acquire_session();
|
|
}
|
|
|
|
TEST(TorchpyTest, TensorSharingNotAllowed) {
|
|
size_t nthreads = 2;
|
|
torch::deploy::InterpreterManager m(nthreads);
|
|
// generate a tensor from one interpreter
|
|
auto I0 = m.all_instances()[0].acquire_session();
|
|
auto I1 = m.all_instances()[1].acquire_session();
|
|
auto obj = I0.global("torch", "empty")({I0.from_ivalue(2)});
|
|
auto t = obj.toIValue().toTensor();
|
|
// try to feed it to the other interpreter, should error
|
|
ASSERT_THROW(I1.global("torch", "sigmoid")({t}), c10::Error);
|
|
}
|
|
|
|
TEST(TorchpyTest, TaggingRace) {
|
|
// At time of writing, this takes about 7s to run on DEBUG=1. I think
|
|
// this is OK, but feel free to fiddle with the knobs here to reduce the
|
|
// runtime
|
|
constexpr int64_t trials = 4;
|
|
constexpr int64_t nthreads = 16;
|
|
torch::deploy::InterpreterManager m(nthreads);
|
|
for (int64_t n = 0; n < trials; n++) {
|
|
at::Tensor t = torch::empty(2);
|
|
std::atomic<int64_t> success(0);
|
|
std::atomic<int64_t> failed(0);
|
|
at::parallel_for(0, nthreads, 1, [&](int64_t begin, int64_t end) {
|
|
for (int64_t i = begin; i < end; i++) {
|
|
auto I = m.all_instances()[i].acquire_session();
|
|
try {
|
|
I.from_ivalue(t);
|
|
success++;
|
|
} catch (const c10::Error& e) {
|
|
failed++;
|
|
}
|
|
}
|
|
});
|
|
ASSERT_EQ(success, 1);
|
|
ASSERT_EQ(failed, nthreads - 1);
|
|
}
|
|
}
|
|
|
|
TEST(TorchpyTest, DisarmHook) {
|
|
at::Tensor t = torch::empty(2);
|
|
{
|
|
torch::deploy::InterpreterManager m(1);
|
|
auto I = m.acquire_one();
|
|
I.from_ivalue(t);
|
|
} // unload the old interpreter
|
|
torch::deploy::InterpreterManager m(1);
|
|
auto I = m.acquire_one();
|
|
ASSERT_THROW(I.from_ivalue(t), c10::Error); // NOT a segfault
|
|
}
|