mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
- Summary:
Added synchronized batch normalization, allows synchronization of stats across mini-batches between processes within a process group.
Current implementation uses a mixture of extended ATen native functions (cpp cuda extension) + torch.nn.modules (c10d python API)
- User-facing api:
1. torch.nn.utils.convert_sync_batchnorm(modules, process_group=None)
2. torch.nn.SyncBatchNorm(num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ***process_group=None***)
- supported use case:
DistributedDataParallel with ***single-gpu multi-process***
a. User creates model containing `torch.nn.SyncBatchNorm` layers through one of the ways listed below:
1. use layers directly:
torch.nn.SyncBatchNorm(...)
similar API as with torch.nn.BatchNormXd(...)
with added argument `process_group` which is used to limit the scope of
synchronization within each process group. Default value is None, which
implies synchronization across all GPUs
2. use torch.nn.utils.convert_sync_batchnorm(modules, process_group)
recursively convert all `torch.nn.BatchNormXd` into `torch.nn.SyncBatchNorm`
preserving values of parameters/buffers.
the utility function also allows user to specify process_group value to all
converted layers.
b. user wraps their model with
`torch.distributed.parallel.DataParallelDistributed`, from this point, user
should follow the general guidelines for DDP use guide
- Error checking
For use cases not supported, we error out:
1. Application launched without ddp:
> import torch
> sbn = torch.nn.SyncBatchNorm(10).cuda()
> inp = torch.randn(5, 10, 3, 3).cuda()
> sbn(inp) --> Error!
> AttributeError: SyncBatchNorm is only supported within torch.nn.parallel.DistributedDataParallel
2. Application launched using DDP with multi-GPU per-process:
> ddp_module = nn.parallel.DistributedDataParallel(module, device_ids=device_ids, output_device=args.local_rank)
> ValueError: SyncBatchNorm is only supported for DDP with single GPU per process
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14267
Differential Revision: D14270035
Pulled By: ezyang
fbshipit-source-id: 4956d8fa565c32e9df5408d53719ff9f945f4d6d
461 lines
21 KiB
Python
461 lines
21 KiB
Python
from __future__ import division
|
|
|
|
import torch
|
|
from ._functions import SyncBatchNorm as sync_batch_norm
|
|
from .module import Module
|
|
from torch.nn.parameter import Parameter
|
|
from .. import functional as F
|
|
from .. import init
|
|
from ..._jit_internal import weak_module, weak_script_method
|
|
|
|
|
|
# TODO: check contiguous in THNN
|
|
# TODO: use separate backend functions?
|
|
@weak_module
|
|
class _BatchNorm(Module):
|
|
_version = 2
|
|
__constants__ = ['track_running_stats', 'momentum', 'eps', 'weight', 'bias',
|
|
'running_mean', 'running_var', 'num_batches_tracked']
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
|
|
track_running_stats=True):
|
|
super(_BatchNorm, self).__init__()
|
|
self.num_features = num_features
|
|
self.eps = eps
|
|
self.momentum = momentum
|
|
self.affine = affine
|
|
self.track_running_stats = track_running_stats
|
|
if self.affine:
|
|
self.weight = Parameter(torch.Tensor(num_features))
|
|
self.bias = Parameter(torch.Tensor(num_features))
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
if self.track_running_stats:
|
|
self.register_buffer('running_mean', torch.zeros(num_features))
|
|
self.register_buffer('running_var', torch.ones(num_features))
|
|
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
|
|
else:
|
|
self.register_parameter('running_mean', None)
|
|
self.register_parameter('running_var', None)
|
|
self.register_parameter('num_batches_tracked', None)
|
|
self.reset_parameters()
|
|
|
|
def reset_running_stats(self):
|
|
if self.track_running_stats:
|
|
self.running_mean.zero_()
|
|
self.running_var.fill_(1)
|
|
self.num_batches_tracked.zero_()
|
|
|
|
def reset_parameters(self):
|
|
self.reset_running_stats()
|
|
if self.affine:
|
|
init.uniform_(self.weight)
|
|
init.zeros_(self.bias)
|
|
|
|
def _check_input_dim(self, input):
|
|
raise NotImplementedError
|
|
|
|
@weak_script_method
|
|
def forward(self, input):
|
|
self._check_input_dim(input)
|
|
|
|
exponential_average_factor = 0.0
|
|
|
|
if self.training and self.track_running_stats:
|
|
# TODO: if statement only here to tell the jit to skip emitting this when it is None
|
|
if self.num_batches_tracked is not None:
|
|
self.num_batches_tracked += 1
|
|
if self.momentum is None: # use cumulative moving average
|
|
exponential_average_factor = 1.0 / float(self.num_batches_tracked)
|
|
else: # use exponential moving average
|
|
exponential_average_factor = self.momentum
|
|
|
|
return F.batch_norm(
|
|
input, self.running_mean, self.running_var, self.weight, self.bias,
|
|
self.training or not self.track_running_stats,
|
|
exponential_average_factor, self.eps)
|
|
|
|
def extra_repr(self):
|
|
return '{num_features}, eps={eps}, momentum={momentum}, affine={affine}, ' \
|
|
'track_running_stats={track_running_stats}'.format(**self.__dict__)
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
version = local_metadata.get('version', None)
|
|
|
|
if (version is None or version < 2) and self.track_running_stats:
|
|
# at version 2: added num_batches_tracked buffer
|
|
# this should have a default value of 0
|
|
num_batches_tracked_key = prefix + 'num_batches_tracked'
|
|
if num_batches_tracked_key not in state_dict:
|
|
state_dict[num_batches_tracked_key] = torch.tensor(0, dtype=torch.long)
|
|
|
|
super(_BatchNorm, self)._load_from_state_dict(
|
|
state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs)
|
|
|
|
|
|
@weak_module
|
|
class BatchNorm1d(_BatchNorm):
|
|
r"""Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D
|
|
inputs with optional additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
|
|
.. math::
|
|
|
|
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
|
|
The mean and standard-deviation are calculated per-dimension over
|
|
the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
|
|
of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are sampled
|
|
from :math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0.
|
|
|
|
Also by default, during training this layer keeps running estimates of its
|
|
computed mean and variance, which are then used for normalization during
|
|
evaluation. The running estimates are kept with a default :attr:`momentum`
|
|
of 0.1.
|
|
|
|
If :attr:`track_running_stats` is set to ``False``, this layer then does not
|
|
keep running estimates, and batch statistics are instead used during
|
|
evaluation time as well.
|
|
|
|
.. note::
|
|
This :attr:`momentum` argument is different from one used in optimizer
|
|
classes and the conventional notion of momentum. Mathematically, the
|
|
update rule for running statistics here is
|
|
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
|
|
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
|
|
new observed value.
|
|
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, L)` slices, it's common terminology to call this Temporal Batch Normalization.
|
|
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, L)` or :math:`L` from input of size :math:`(N, L)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
affine: a boolean value that when set to ``True``, this module has
|
|
learnable affine parameters. Default: ``True``
|
|
track_running_stats: a boolean value that when set to ``True``, this
|
|
module tracks the running mean and variance, and when set to ``False``,
|
|
this module does not track such statistics and always uses batch
|
|
statistics in both training and eval modes. Default: ``True``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C)` or :math:`(N, C, L)`
|
|
- Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
|
|
|
|
Examples::
|
|
|
|
>>> # With Learnable Parameters
|
|
>>> m = nn.BatchNorm1d(100)
|
|
>>> # Without Learnable Parameters
|
|
>>> m = nn.BatchNorm1d(100, affine=False)
|
|
>>> input = torch.randn(20, 100)
|
|
>>> output = m(input)
|
|
|
|
.. _`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`:
|
|
https://arxiv.org/abs/1502.03167
|
|
"""
|
|
|
|
@weak_script_method
|
|
def _check_input_dim(self, input):
|
|
if input.dim() != 2 and input.dim() != 3:
|
|
raise ValueError('expected 2D or 3D input (got {}D input)'
|
|
.format(input.dim()))
|
|
|
|
|
|
@weak_module
|
|
class BatchNorm2d(_BatchNorm):
|
|
r"""Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs
|
|
with additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
|
|
.. math::
|
|
|
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
|
|
The mean and standard-deviation are calculated per-dimension over
|
|
the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
|
|
of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are sampled
|
|
from :math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0.
|
|
|
|
Also by default, during training this layer keeps running estimates of its
|
|
computed mean and variance, which are then used for normalization during
|
|
evaluation. The running estimates are kept with a default :attr:`momentum`
|
|
of 0.1.
|
|
|
|
If :attr:`track_running_stats` is set to ``False``, this layer then does not
|
|
keep running estimates, and batch statistics are instead used during
|
|
evaluation time as well.
|
|
|
|
.. note::
|
|
This :attr:`momentum` argument is different from one used in optimizer
|
|
classes and the conventional notion of momentum. Mathematically, the
|
|
update rule for running statistics here is
|
|
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
|
|
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
|
|
new observed value.
|
|
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, H, W)` slices, it's common terminology to call this Spatial Batch Normalization.
|
|
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, H, W)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
affine: a boolean value that when set to ``True``, this module has
|
|
learnable affine parameters. Default: ``True``
|
|
track_running_stats: a boolean value that when set to ``True``, this
|
|
module tracks the running mean and variance, and when set to ``False``,
|
|
this module does not track such statistics and always uses batch
|
|
statistics in both training and eval modes. Default: ``True``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, H, W)`
|
|
- Output: :math:`(N, C, H, W)` (same shape as input)
|
|
|
|
Examples::
|
|
|
|
>>> # With Learnable Parameters
|
|
>>> m = nn.BatchNorm2d(100)
|
|
>>> # Without Learnable Parameters
|
|
>>> m = nn.BatchNorm2d(100, affine=False)
|
|
>>> input = torch.randn(20, 100, 35, 45)
|
|
>>> output = m(input)
|
|
|
|
.. _`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`:
|
|
https://arxiv.org/abs/1502.03167
|
|
"""
|
|
|
|
@weak_script_method
|
|
def _check_input_dim(self, input):
|
|
if input.dim() != 4:
|
|
raise ValueError('expected 4D input (got {}D input)'
|
|
.format(input.dim()))
|
|
|
|
|
|
@weak_module
|
|
class BatchNorm3d(_BatchNorm):
|
|
r"""Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs
|
|
with additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
|
|
.. math::
|
|
|
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
|
|
The mean and standard-deviation are calculated per-dimension over
|
|
the mini-batches and :math:`\gamma` and :math:`\beta` are learnable parameter vectors
|
|
of size `C` (where `C` is the input size). By default, the elements of :math:`\gamma` are sampled
|
|
from :math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0.
|
|
|
|
Also by default, during training this layer keeps running estimates of its
|
|
computed mean and variance, which are then used for normalization during
|
|
evaluation. The running estimates are kept with a default :attr:`momentum`
|
|
of 0.1.
|
|
|
|
If :attr:`track_running_stats` is set to ``False``, this layer then does not
|
|
keep running estimates, and batch statistics are instead used during
|
|
evaluation time as well.
|
|
|
|
.. note::
|
|
This :attr:`momentum` argument is different from one used in optimizer
|
|
classes and the conventional notion of momentum. Mathematically, the
|
|
update rule for running statistics here is
|
|
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
|
|
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
|
|
new observed value.
|
|
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, D, H, W)` slices, it's common terminology to call this Volumetric Batch Normalization
|
|
or Spatio-temporal Batch Normalization.
|
|
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, D, H, W)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
affine: a boolean value that when set to ``True``, this module has
|
|
learnable affine parameters. Default: ``True``
|
|
track_running_stats: a boolean value that when set to ``True``, this
|
|
module tracks the running mean and variance, and when set to ``False``,
|
|
this module does not track such statistics and always uses batch
|
|
statistics in both training and eval modes. Default: ``True``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, D, H, W)`
|
|
- Output: :math:`(N, C, D, H, W)` (same shape as input)
|
|
|
|
Examples::
|
|
|
|
>>> # With Learnable Parameters
|
|
>>> m = nn.BatchNorm3d(100)
|
|
>>> # Without Learnable Parameters
|
|
>>> m = nn.BatchNorm3d(100, affine=False)
|
|
>>> input = torch.randn(20, 100, 35, 45, 10)
|
|
>>> output = m(input)
|
|
|
|
.. _`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`:
|
|
https://arxiv.org/abs/1502.03167
|
|
"""
|
|
|
|
@weak_script_method
|
|
def _check_input_dim(self, input):
|
|
if input.dim() != 5:
|
|
raise ValueError('expected 5D input (got {}D input)'
|
|
.format(input.dim()))
|
|
|
|
|
|
class SyncBatchNorm(_BatchNorm):
|
|
r"""Applies Batch Normalization over a N-Dimensional input (a mini-batch of [N-2]D inputs
|
|
with additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
|
|
.. math::
|
|
|
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
|
|
The mean and standard-deviation are calculated per-dimension over all
|
|
mini-batches of the same process groups. :math:`\gamma` and :math:`\beta`
|
|
are learnable parameter vectors of size `C` (where `C` is the input size).
|
|
By default, the elements of :math:`\gamma` are sampled from
|
|
:math:`\mathcal{U}(0, 1)` and the elements of :math:`\beta` are set to 0.
|
|
|
|
Also by default, during training this layer keeps running estimates of its
|
|
computed mean and variance, which are then used for normalization during
|
|
evaluation. The running estimates are kept with a default :attr:`momentum`
|
|
of 0.1.
|
|
|
|
If :attr:`track_running_stats` is set to ``False``, this layer then does not
|
|
keep running estimates, and batch statistics are instead used during
|
|
evaluation time as well.
|
|
|
|
.. note::
|
|
This :attr:`momentum` argument is different from one used in optimizer
|
|
classes and the conventional notion of momentum. Mathematically, the
|
|
update rule for running statistics here is
|
|
:math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momemtum} \times x_t`,
|
|
where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
|
|
new observed value.
|
|
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, +)` slices, it's common terminology to call this Volumetric Batch Normalization
|
|
or Spatio-temporal Batch Normalization.
|
|
|
|
Currently SyncBatchNorm only supports DistributedDataParallel with single GPU per process. Use
|
|
torch.nn.utils.convert_sync_batchnorm() to convert BatchNorm layer to SyncBatchNorm before wrapping
|
|
Network with DDP.
|
|
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, +)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
affine: a boolean value that when set to ``True``, this module has
|
|
learnable affine parameters. Default: ``True``
|
|
track_running_stats: a boolean value that when set to ``True``, this
|
|
module tracks the running mean and variance, and when set to ``False``,
|
|
this module does not track such statistics and always uses batch
|
|
statistics in both training and eval modes. Default: ``True``
|
|
process_group: synchronization of stats happen within each process group
|
|
individually. Default behavior is synchronization across the whole
|
|
world
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, +)`
|
|
- Output: :math:`(N, C, +)` (same shape as input)
|
|
|
|
Examples::
|
|
|
|
>>> # With Learnable Parameters
|
|
>>> m = nn.SyncBatchNorm(100)
|
|
>>> # creating process group (optional)
|
|
>>> # process_ids is a list of int identifying rank ids.
|
|
>>> process_group = torch.distributed.new_group(process_ids)
|
|
>>> # Without Learnable Parameters
|
|
>>> m = nn.BatchNorm3d(100, affine=False, process_group=process_group)
|
|
>>> input = torch.randn(20, 100, 35, 45, 10)
|
|
>>> output = m(input)
|
|
|
|
>>> # network is nn.BatchNorm layer
|
|
>>> sync_bn_network = torch.nn.utils.convert_sync_batchnorm(network, process_group)
|
|
>>> # only single gpu per process is currently supported
|
|
>>> ddp_sync_bn_network = torch.nn.parallel.DistributedDataParallel(
|
|
>>> sync_bn_network,
|
|
>>> device_ids=[args.local_rank],
|
|
>>> output_device=args.local_rank)
|
|
|
|
.. _`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`:
|
|
https://arxiv.org/abs/1502.03167
|
|
"""
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
|
|
track_running_stats=True, process_group=None):
|
|
super(SyncBatchNorm, self).__init__(num_features, eps, momentum, affine, track_running_stats)
|
|
self.process_group = process_group
|
|
# gpu_size is set through DistributedDataParallel initialization. This is to ensure that SyncBatchNorm is used
|
|
# under supported condition (single GPU per process)
|
|
self.ddp_gpu_size = None
|
|
|
|
def _check_input_dim(self, input):
|
|
if input.dim() <= 2:
|
|
raise ValueError('expected at least 3D input (got {}D input)'
|
|
.format(input.dim()))
|
|
|
|
def _specify_ddp_gpu_num(self, gpu_size):
|
|
if gpu_size > 1:
|
|
raise ValueError('SyncBatchNorm is only supported for DDP with single GPU per process')
|
|
self.ddp_gpu_size = gpu_size
|
|
|
|
def forward(self, input):
|
|
# currently only GPU input is supported
|
|
if not input.is_cuda:
|
|
raise ValueError('expected input tensor to be on GPU')
|
|
|
|
if not self.ddp_gpu_size:
|
|
raise AttributeError('SyncBatchNorm is only supported within torch.nn.parallel.DistributedDataParallel')
|
|
|
|
self._check_input_dim(input)
|
|
|
|
exponential_average_factor = 0.0
|
|
|
|
if self.training and self.track_running_stats:
|
|
self.num_batches_tracked += 1
|
|
if self.momentum is None: # use cumulative moving average
|
|
exponential_average_factor = 1.0 / self.num_batches_tracked.item()
|
|
else: # use exponential moving average
|
|
exponential_average_factor = self.momentum
|
|
|
|
world_size = 1
|
|
process_group = torch.distributed.group.WORLD
|
|
if self.process_group:
|
|
process_group = self.process_group
|
|
world_size = torch.distributed.get_world_size(process_group)
|
|
|
|
# fallback to framework BN when synchronization is not necessary
|
|
if world_size == 1 or (not self.training and self.track_running_stats):
|
|
return F.batch_norm(
|
|
input, self.running_mean, self.running_var, self.weight, self.bias,
|
|
self.training or not self.track_running_stats,
|
|
exponential_average_factor, self.eps)
|
|
else:
|
|
return sync_batch_norm.apply(
|
|
input, self.weight, self.bias, self.running_mean, self.running_var,
|
|
self.eps, exponential_average_factor, process_group, world_size)
|