pytorch/torch/_dynamo/variables/misc.py
Ryan Guo 394c143e4e [dynamo] Fix error when inlining certain nested closure returned by another function (#137510)
See `test_inline_closure_returned_by_another_function_and_captures` and #136814 for more context.

In #90286, we introduced an optimization so that for captured cells that are unmodified during a Dynamo trace, `UserFunctionVariable` will represent them as variable of the cell's actual value, rather than a `NewCellVariable`.

Later on we introduced more mechanisms to model such cells across function calls (#104222), and across function calls where `NestedUserFunctionVariable::bind_args` need to look up further in the parent frames (#106491) to find these cells' values.

This patch removes `InlinedClosureVariable` in favor of a simpler modelling, which is also more consistent with what was introduced in #90286, i.e., just model these cells as their contents, in `symbolic_locals`.

This fixes #136814 because resolution of `InlinedClosureVariable` to the underlying cell content value happens in
`NestedUserFunctionVariable::bind_args`, which requires Dynamo to have the value in scope at the function call site (when Dynamo does inlining), but's not always the case (as the test case shows). However, if we model the cells in `symbolic_locals`, we never need such resolution, and the values are directly stored into the `NestedUserFunctionVariable::closure` upon the function creation, at which point Dynamo always has the cell value in `symbolic_locals` for look up.

Fixes #136814.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137510
Approved by: https://github.com/williamwen42
2024-10-09 18:13:57 +00:00

1723 lines
60 KiB
Python

# mypy: ignore-errors
import collections
import dataclasses
import functools
import inspect
import itertools
import random
import re
import sys
import types
import warnings
from typing import Dict, List, Optional, TYPE_CHECKING
import torch._C
import torch._numpy as tnp
import torch.utils._pytree as pytree
from .. import config, variables
from ..bytecode_transformation import create_call_function, create_instruction
from ..create_parameter_op import do_not_convert_to_tracable_parameter
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..mutation_guard import unpatched_nn_module_init
from ..source import (
AttrSource,
DefaultsSource,
GetItemSource,
ODictGetItemSource,
TypeSource,
)
from ..utils import (
check_unspec_or_constant_args,
identity,
is_tensor_base_attr_getter,
proxy_args_kwargs,
set_example_value,
)
from .base import VariableTracker
from .functions import (
NestedUserFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
wrap_bound_arg,
)
from .nn_module import UnspecializedNNModuleVariable
from .user_defined import call_random_fn, is_standard_setattr, UserDefinedObjectVariable
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
class NO_SUCH_SUBOBJ:
pass
class SuperVariable(VariableTracker):
_nonvar_fields = {
"specialized",
*VariableTracker._nonvar_fields,
}
def __init__(self, typevar, objvar=None, specialized=False, **kwargs) -> None:
super().__init__(**kwargs)
# typevar is the fist argument to super(). In the case where no argument
# is provided to super(), it is the __class__ object where
# the super() function is being called
self.typevar = typevar
# objvar here must be an instance or subtype of typevar.
# In the case where super() is called without arguments, it is the first argument
# to the current function where super() is called from (self for regular method,
# cls for a classmethod)
self.objvar = objvar
self.specialized = specialized # directly get attr from self.typevar if true
def reconstruct(self, codegen):
codegen.add_push_null(lambda: codegen(variables.BuiltinVariable(super)))
codegen(self.typevar)
if self.objvar is not None:
codegen(self.objvar)
codegen.extend_output(create_call_function(2, False))
else:
codegen.extend_output(create_call_function(1, False))
def _resolved_getattr_and_source(self, tx: "InstructionTranslator", name):
assert self.objvar, "1-arg super not implemented"
if self.specialized:
return getattr(self.typevar.as_python_constant(), name)
search_type = self.typevar.as_python_constant()
# The rest of this function does two things:
# - Walk the mro to find where the attribute comes from to be
# able to provide accurate source
# - Call the getattr to get the object
# Find the class object, where the function lives.
# When objvar is "self", use type(self), when objvar is "cls", use it as-is
type_to_use = self.objvar.python_type()
type_to_use_source = (
TypeSource(self.objvar.source) if self.objvar.source else None
)
if issubclass(type_to_use, type):
type_to_use = self.objvar.value
type_to_use_source = self.objvar.source
source = None
resolved_class = None
resolved_attr = None
search_mro = type_to_use.__mro__
try:
start_index = search_mro.index(search_type) + 1
except ValueError:
# Corner case where the typevar is not in the mro of the objvar
# https://github.com/python/cpython/blob/3.11/Objects/typeobject.c#L8843-L8844
return getattr(super(search_type, type_to_use), name), None
# Implemented based on https://github.com/python/cpython/blob/3.11/Objects/typeobject.c#L8812
# super has its getattro implementation. The key point is that instead of calling getattr, it checks the
# attribute in the class __dict__
for index in range(start_index, len(search_mro)):
# Dont call getattr, just check the __dict__ of the class
if resolved_getattr := search_mro[index].__dict__.get(name, NO_SUCH_SUBOBJ):
if resolved_getattr is not NO_SUCH_SUBOBJ:
# Equivalent of something like type(L['self']).__mro__[1].attr_name
if type_to_use_source:
source = AttrSource(
GetItemSource(
AttrSource(type_to_use_source, "__mro__"), index
),
name,
)
return resolved_getattr, source
unimplemented("Unable to resolve super getattr")
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
# Check if getattr is a constant. If not, delay the actual work by
# wrapping the result in GetAttrVariable. Mostly super is called with a
# method, so most of the work is delayed to call_function.
#
# We could have just implemented a const_getattr. However, super is
# special when it comes to finding sources. Compared to other VTs, super
# requires the attr name to walk the mro and find the actual source (and
# not just AttrSource).
value, source = self._resolved_getattr_and_source(self, name)
if not variables.ConstantVariable.is_literal(value):
return GetAttrVariable(self, name)
if source:
install_guard(source.make_guard(GuardBuilder.CONSTANT_MATCH))
return variables.ConstantVariable.create(value, source=source)
return variables.ConstantVariable.create(value)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
inner_fn, source = self._resolved_getattr_and_source(self, name)
if inner_fn is object.__init__:
return LambdaVariable(identity)
elif inner_fn is torch.nn.Module.__init__:
objvar = self.objvar
from ..side_effects import AttributeMutationNew
if (
isinstance(objvar, variables.UserDefinedObjectVariable)
and isinstance(objvar.mutable_local, AttributeMutationNew)
and not (args or kwargs)
):
with do_not_convert_to_tracable_parameter():
return variables.UserFunctionVariable(
unpatched_nn_module_init, source=source
).call_function(tx, [self.objvar] + args, kwargs)
else:
unimplemented("super() nn.Module.__init__")
elif self.objvar.source and inner_fn is object.__new__:
return tx.output.side_effects.track_object_new_from_user_defined_class(
self.objvar
)
elif isinstance(inner_fn, staticmethod) and isinstance(
inner_fn.__func__, types.FunctionType
):
return variables.UserFunctionVariable(
inner_fn.__func__, source=source
).call_function(tx, args, kwargs)
elif isinstance(inner_fn, classmethod) and isinstance(
inner_fn.__func__, types.FunctionType
):
return variables.UserMethodVariable(
inner_fn.__func__, self.objvar, source=source
).call_function(tx, args, kwargs)
elif isinstance(inner_fn, types.FunctionType):
return variables.UserFunctionVariable(
inner_fn, source=source
).call_function(tx, [self.objvar] + args, kwargs)
elif isinstance(inner_fn, types.MethodType):
return variables.UserMethodVariable(
inner_fn.__func__, self.objvar, source=source
).call_function(tx, args, kwargs)
elif (
inner_fn is collections.OrderedDict.__getitem__
and isinstance(self.objvar, variables.UserDefinedObjectVariable)
and self.objvar.source
and len(args) == 1
and len(kwargs) == 0
and args[0].is_python_constant()
):
from .builder import VariableBuilder
key = args[0].as_python_constant()
return VariableBuilder(tx, ODictGetItemSource(self.objvar.source, key))(
collections.OrderedDict.__getitem__(self.objvar.value, key)
)
elif inner_fn in (
collections.OrderedDict.__setitem__,
object.__setattr__,
) and isinstance(self.objvar, variables.CustomizedDictVariable):
assert not kwargs and len(args) == 2
return super(variables.CustomizedDictVariable, self.objvar).call_method(
tx, "__setitem__", args, kwargs
)
elif inner_fn is collections.OrderedDict.__getitem__ and isinstance(
self.objvar, variables.CustomizedDictVariable
):
return super(variables.CustomizedDictVariable, self.objvar).call_method(
tx, "__getitem__", args, kwargs
)
elif is_standard_setattr(inner_fn) and isinstance(
self.objvar, UserDefinedObjectVariable
):
return self.objvar.method_setattr_standard(tx, *args, **kwargs)
elif inner_fn is object.__delattr__:
attr = args[0]
try:
attr = attr.as_python_constant()
except NotImplementedError:
unimplemented(f"non-const delattr attr: {attr}")
if not tx.output.side_effects.is_attribute_mutation(self.objvar):
unimplemented(f"delattr({self.objvar}, {attr}, ...)")
tx.output.side_effects.store_attr(
self.objvar, attr, variables.DeletedVariable()
)
return variables.ConstantVariable(None)
unimplemented(f"non-function or method super: {inner_fn}")
class ExceptionVariable(VariableTracker):
def __init__(self, exc_type, args, **kwargs) -> None:
super().__init__(**kwargs)
self.exc_type = exc_type
self.args = args
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.load_import_from("builtins", self.exc_type.__name__)
)
codegen.foreach(self.args)
codegen.call_function(len(self.args), False)
class UnknownVariable(VariableTracker):
"""
It could be anything!
"""
class DelayGraphBreakVariable(UnknownVariable):
"""
Used to insert a dummy variable in the stack to do the graph break at CALL_FUNCTION.
"""
class ComptimeVariable(VariableTracker):
"""
This variable is special, it lets you execute arbitrary code at
Dynamo compile time
"""
def reconstruct(self, codegen):
raise NotImplementedError("comptime is special form")
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
from ..comptime import comptime
# To support the comptime.print_graph convenience accessors
from .functions import UserFunctionVariable
return UserFunctionVariable(
getattr(comptime, name), source=AttrSource(self.source, name)
)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from ..comptime import ComptimeContext
# TODO: support an expression form as well
assert not kwargs
# Second argument is runtime lambda, ignored
assert len(args) <= 2
fn = args[0]
if isinstance(fn, UserFunctionVariable):
fn.get_function()(ComptimeContext(tx))
elif isinstance(fn, NestedUserFunctionVariable):
# We have to manually bind the freevars ourselves
code = fn.get_code()
assert not fn.closure, (
"comptime function must not have free variables, "
f"but these variables were free: {code.co_freevars}"
)
func = types.FunctionType(
code,
fn.f_globals,
fn.fn_name.as_python_constant(),
tuple(fn.defaults.items) if fn.defaults else None,
# We could automatically promote free variables into
# ComptimeVar but this is confusing if you access
# a free variable that we actually DO have the runtime
# value for
# tuple(make_cell(ComptimeVar(i)) for i in fn.closure.items)
(),
)
func(ComptimeContext(tx))
else:
raise RuntimeError(f"unsupported argument to comptime: {type(fn)}")
return variables.ConstantVariable.create(None)
class ClosureVariable(UnknownVariable):
_nonvar_fields = {
"name",
*UnknownVariable._nonvar_fields,
}
def __init__(self, name, **kwargs) -> None:
super().__init__(**kwargs)
self.name = name
def reconstruct(self, codegen):
codegen.append_output(codegen.create_load_closure(self.name))
class NewCellVariable(VariableTracker):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
class NewGlobalVariable(VariableTracker):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
class InspectSignatureVariable(VariableTracker):
"""represents inspect.signature(...)"""
_nonvar_fields = {
"signature",
"parameters",
*VariableTracker._nonvar_fields,
}
@staticmethod
def create(callable, **kwargs):
if kwargs:
unimplemented(f"inspect.signature with {kwargs}")
return InspectSignatureVariable(
callable, mutable_local=variables.base.MutableLocal()
)
def __init__(self, inspected: VariableTracker, **kwargs) -> None:
super().__init__(**kwargs)
self.inspected = inspected
try:
if hasattr(self.inspected, "get_function"):
self.fn = self.inspected.get_function()
elif isinstance(self.inspected, UnspecializedNNModuleVariable):
self.fn = self.inspected.value
else:
self.fn = self.inspected.as_python_constant()
except NotImplementedError:
unimplemented("inspect.signature with non-constant function")
self.signature = inspect.signature(self.fn)
self.parameters = list(self.signature.parameters.items())
if isinstance(self.inspected, UserMethodVariable):
self.parameters = self.parameters[1:]
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
if name == "parameters":
return variables.ConstDictVariable(
{
variables.ConstantVariable.create(
param[0]
): InspectParameterVariable(param[1])
for param in self.parameters
},
user_cls=dict,
)
return super().var_getattr(tx, name)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "bind":
if not hasattr(self.fn, "__kwdefaults__"):
unimplemented(
f"inspect.signature.bind with {self.fn} without __kwdefaults__"
)
obj = self.signature.bind(*args, **kwargs)
# wrap function defaults in VTs
defaults = {}
if self.fn.__kwdefaults__:
wrap = functools.partial(wrap_bound_arg, tx=tx)
kwdefaults_sources = {
k: (
None
if self.source is None
else DefaultsSource(self.source, k, is_kw=True)
)
for k in self.fn.__kwdefaults__
}
defaults = {
k: wrap(val=v, source=kwdefaults_sources[k])
for k, v in self.fn.__kwdefaults__.items()
}
return InspectBoundArgumentsVariable(
obj,
defaults,
self,
)
return super().call_method(tx, name, args, kwargs)
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_python_module(inspect),
codegen.create_load_attr("signature"),
]
)
)
codegen(self.inspected)
codegen.extend_output(create_call_function(1, False))
class InspectParameterVariable(VariableTracker):
"""represents inspect.Parameter(...)"""
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
from .builder import SourcelessBuilder, VariableBuilder
try:
attr_value = getattr(self.value, name)
if self.source:
attr_source = AttrSource(self.source, name)
return VariableBuilder(tx, attr_source)(attr_value)
else:
return SourcelessBuilder.create(tx, attr_value)
except AttributeError:
unimplemented(f"getattr({self.value}, {name})")
class InspectBoundArgumentsVariable(VariableTracker):
"""represents inspect.signature(...).bind(...)"""
_nonvar_fields = {
"bound_arguments",
"packed_vars",
*VariableTracker._nonvar_fields,
}
# NOTE: we keep track of changes to arguments via bound_arguments_var,
# but we still keep a copy of the inspect.BoundArguments object in order
# to get the correct args/kwargs.
def __init__(
self,
bound_arguments: inspect.BoundArguments,
defaults: Dict[str, VariableTracker],
signature: InspectSignatureVariable,
**kwargs,
):
super().__init__(**kwargs)
self.bound_arguments = bound_arguments
self.defaults = defaults
# used to convert from VT to tuple/dict when updating bound_arguments
self.packed_vars = set()
arguments_dict = {}
for key, val in bound_arguments.arguments.items():
key_var = variables.ConstantVariable(key)
# convert val to VT
if isinstance(val, tuple):
arguments_dict[key_var] = variables.TupleVariable(list(val))
self.packed_vars.add(key)
elif isinstance(val, dict):
self.packed_vars.add(key)
arguments_dict[key_var] = variables.ConstDictVariable(
{variables.ConstantVariable(k): v for k, v in val.items()}
)
elif isinstance(val, VariableTracker):
arguments_dict[key_var] = val
else:
unimplemented(
"inspect.signature(...).bind(...).arguments contains non-variable/tuple/dict"
)
self.bound_arguments_var = variables.ConstDictVariable(
arguments_dict,
type(bound_arguments.arguments),
mutable_local=variables.base.MutableLocal(),
)
self.signature = signature
def _update_bound_arguments(self):
for key, val in self.bound_arguments_var.items.items():
true_val = val
if key.underlying_value in self.packed_vars:
if isinstance(val, variables.TupleVariable):
true_val = tuple(val.items)
elif isinstance(val, variables.ConstDictVariable):
true_val = {k.underlying_value: v for k, v in val.items.items()}
else:
unimplemented(
"inspect.signature(...).bind(...) cannot update bound arguments"
)
self.bound_arguments.arguments[key.underlying_value] = true_val
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
if name == "arguments":
return self.bound_arguments_var
elif name == "args":
self._update_bound_arguments()
return variables.TupleVariable(list(self.bound_arguments.args))
elif name == "kwargs":
self._update_bound_arguments()
kw = {
variables.ConstantVariable(key): val
for key, val in self.bound_arguments.kwargs.items()
}
return variables.ConstDictVariable(kw)
elif name == "signature":
return self.signature
return super().var_getattr(tx, name)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "apply_defaults":
# mimic calling apply_defaults
for key, val in self.defaults.items():
key_var = variables.ConstantVariable(key)
if key_var not in self.bound_arguments_var:
self.bound_arguments_var.call_method(
tx, "__setitem__", [key_var, val], {}
)
# actually apply the changes
self._update_bound_arguments()
return variables.ConstantVariable(None)
return super().call_method(tx, name, args, kwargs)
def reconstruct(self, codegen):
# reconstruct inspect.signature(...).bind(*bound_arguments.args, **bound_arguments.kwargs)
# NOTE the reconstructed inspect.signature(...) object might not be the same object
# as the Signature object that originally created the BoundArguments object.
self._update_bound_arguments()
def gen_fn():
codegen(self.signature)
codegen.append_output(codegen.create_load_attr("bind"))
codegen.add_push_null(gen_fn, call_function_ex=True)
codegen.foreach(self.bound_arguments.args)
codegen.append_output(
create_instruction("BUILD_TUPLE", arg=len(self.bound_arguments.args))
)
for key, val in self.bound_arguments.kwargs.items():
codegen.append_output(codegen.create_load_const(key))
codegen(val)
codegen.extend_output(
[
create_instruction("BUILD_MAP", arg=len(self.bound_arguments.kwargs)),
create_instruction("CALL_FUNCTION_EX", arg=1),
]
)
def produce_trampoline_autograd_apply(fn_cls):
def trampoline_autograd_apply(*args, **kwargs):
return fn_cls.apply(*args, **kwargs)
trampoline_autograd_apply._origin = produce_trampoline_autograd_apply
return trampoline_autograd_apply
class AutogradFunctionVariable(VariableTracker):
"""represents a torch.autograd.Function subclass"""
_nonvar_fields = {
"fn_cls",
*VariableTracker._nonvar_fields,
}
def __init__(self, fn_cls, **kwargs) -> None:
super().__init__(**kwargs)
self.fn_cls = fn_cls
def call_apply(self, tx: "InstructionTranslator", args, kwargs):
requires_grad = False
def visit(node):
nonlocal requires_grad
if isinstance(node, variables.TensorVariable):
if node.requires_grad is not False:
requires_grad = True
if isinstance(node, variables.NNModuleVariable):
if node.is_training(tx):
requires_grad = True
VariableTracker.visit(visit, (args, kwargs))
if requires_grad and torch.is_grad_enabled():
if config.capture_autograd_function:
warnings.warn(
"The config.capture_autograd_function flag is deprecated, it's now always true."
)
from torch._functorch.autograd_function import (
autograd_function_forward_rewritten,
)
from torch.autograd.function import _is_setup_context_defined
forward_fn = self.fn_cls.forward
is_setup_ctx_defined = _is_setup_context_defined(self.fn_cls.setup_context)
if is_setup_ctx_defined:
# If setup_context is defined, we generate a new forward function which includes
# the original forward and setup_context function, and trace the new forward function.
forward_fn = autograd_function_forward_rewritten(
self.fn_cls.forward, self.fn_cls.setup_context
)
vjp_fn = self.fn_cls.vjp # type: ignore[attr-defined]
if vjp_fn is not torch.autograd.Function.vjp:
unimplemented("NYI - User defind vjp")
jvp_fn = self.fn_cls.jvp # type: ignore[attr-defined]
if jvp_fn is not torch.autograd.Function.jvp:
unimplemented("NYI - User defind jvp")
from .higher_order_ops import AutogradFunctionApplyVariable
source = self.source
if source is None:
source = AttrSource(
tx.import_source(self.fn_cls.__module__), self.fn_cls.__name__
)
val = AutogradFunctionApplyVariable(
forward_fn,
self.fn_cls.backward,
source,
source=AttrSource(source, member="apply"),
).call_function(tx, args, kwargs)
# Inside of AutogradFunctionApplyVariable.call_function, we use sourceless variable wrapping
# the forward function, as we don't want to generate guards for new_forward.__closure__
# if forward is rewritten by autograd_function_forward_rewritten.
# But we still need to generate correct guards for the original forward and setup_context
# functions, so we have to add guards manually.
if self.source:
fwd_src = AttrSource(self.source, "forward")
install_guard(fwd_src.make_guard(GuardBuilder.FUNCTION_MATCH))
if is_setup_ctx_defined:
setup_ctx_src = AttrSource(self.source, "setup_context")
install_guard(setup_ctx_src.make_guard(GuardBuilder.FUNCTION_MATCH))
return val
if self.source:
source = AttrSource(self.source, "forward")
else:
source = None
fn = self.fn_cls.forward
ctx = AutogradFunctionContextVariable.create(tx, args, kwargs)
args = [ctx, *args]
if isinstance(fn, types.FunctionType):
return variables.UserFunctionVariable(fn, source=source).call_function(
tx, args, kwargs
)
elif isinstance(fn, types.MethodType):
return variables.UserMethodVariable(
fn.__func__,
variables.UserDefinedClassVariable(self.fn_cls),
source=source,
).call_function(tx, args, kwargs)
else:
unimplemented(
f"non-function or method in subclass of torch.autograd.Function: {fn}"
)
def call_backward(self, tx: "InstructionTranslator", args, kwargs):
fn = self.fn_cls.backward
self.source = AttrSource(self.source, "backward")
assert type(args[0].value) is torch._dynamo.external_utils.FakeBackwardCFunction
assert isinstance(fn, types.FunctionType)
return variables.UserFunctionVariable(fn, source=self.source).call_function(
tx, args, kwargs
)
def call_function(self, tx: "InstructionTranslator", args, kwargs):
return AutogradFunctionVariable(self.fn_cls)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
):
from ..trace_rules import is_callable_allowed
from .builder import wrap_fx_proxy
if name == "apply":
if is_callable_allowed(self.fn_cls):
trampoline_autograd_apply = produce_trampoline_autograd_apply(
self.fn_cls
)
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
trampoline_autograd_apply,
*proxy_args_kwargs(args, kwargs),
),
)
else:
return self.call_apply(tx, args, kwargs)
elif name == "backward":
return self.call_backward(tx, args, kwargs)
else:
from .. import trace_rules
source = AttrSource(self.source, name) if self.source is not None else None
try:
obj = inspect.getattr_static(self.fn_cls, name)
except AttributeError:
obj = None
if isinstance(obj, staticmethod):
func = obj.__get__(self.fn_cls)
if source is not None:
return (
trace_rules.lookup(func)
.create_with_source(func, source=source)
.call_function(tx, args, kwargs)
)
else:
return trace_rules.lookup(func)(func).call_function(
tx, args, kwargs
)
elif isinstance(obj, classmethod):
return variables.UserMethodVariable(
obj.__func__, self, source=source
).call_function(tx, args, kwargs)
else:
unimplemented(f"Unsupported method: {name}")
@dataclasses.dataclass
class SavedTensorBox:
tensors: List[VariableTracker] = dataclasses.field(default_factory=list)
class AutogradFunctionContextVariable(UserDefinedObjectVariable):
"""
Tracks an autograd.Function() context using mutation tracking in side_effects.py
"""
_nonvar_fields = {
"proxy",
"inference",
"saved_tensors",
*UserDefinedObjectVariable._nonvar_fields,
}
def __init__(
self,
value,
value_type=None,
inference=False,
proxy=None,
saved_tensors=None,
needs_input_grad=None,
non_differentiable=None,
**kwargs,
) -> None:
super().__init__(value=value, value_type=value_type, **kwargs)
self.inference = inference
self.proxy = proxy
self.saved_tensors = saved_tensors
self.needs_input_grad = needs_input_grad
self.non_differentiable = non_differentiable
@staticmethod
def create(tx: "InstructionTranslator", args=None, kwargs=None):
needs_input_grad = None
if args and not kwargs:
needs_input_grad = tuple(
isinstance(x, variables.TensorVariable) and x.requires_grad
for x in args
)
proxy = tx.output.create_proxy(
"call_function", torch.autograd.function.FunctionCtx, (), {}
)
out = tx.output.side_effects.track_object_new(
None,
torch.autograd.function.FunctionCtx,
functools.partial(
AutogradFunctionContextVariable,
inference=True,
proxy=proxy,
saved_tensors=SavedTensorBox(),
needs_input_grad=needs_input_grad,
),
{},
)
set_example_value(proxy.node, out.value)
return out
def as_proxy(self):
if self.proxy is None:
unimplemented("proxy not set")
return self.proxy
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__setattr__":
return super().call_method(tx, name, args, kwargs)
elif name == "mark_non_differentiable":
assert len(kwargs) == 0
self.non_differentiable = proxy_args_kwargs(args, {})[0]
return variables.ConstantVariable.create(None)
if name != "save_for_backward":
unimplemented(f"autograd.Function context method: {name}")
if self.saved_tensors is None:
unimplemented(
"save_for_backward only supported on a newly constructed FunctionCtx"
)
if not self.inference:
assert self.source and not kwargs
tx.output.side_effects.track_save_for_backward(self, args)
# In eager mode, multiple calls to .save_for_backward() will overwrite previous calls.
if len(self.saved_tensors.tensors) > 0:
self.saved_tensors.tensors = []
for arg in args:
self.saved_tensors.tensors.append(arg)
return variables.ConstantVariable.create(None)
def var_getattr(self, tx: "InstructionTranslator", name):
if name in ["save_for_backward", "mark_non_differentiable"]:
return LambdaVariable(
lambda *args, **kwargs: self.call_method(tx, name, args, kwargs)
)
if name == "saved_tensors" and self.saved_tensors is not None:
return variables.TupleVariable(list(self.saved_tensors.tensors))
if name == "needs_input_grad":
if self.needs_input_grad is not None:
return variables.ConstantVariable.create(self.needs_input_grad)
if self.source:
from .builder import VariableBuilder
return VariableBuilder(tx, AttrSource(self.source, "needs_input_grad"))(
self.value.needs_input_grad
)
return super().var_getattr(tx, name)
class AutogradEngineVariable(UserDefinedObjectVariable):
"""
Represents a torch._C._ImperativeEngine instance.
"""
def __init__(
self,
value,
value_type=None,
**kwargs,
) -> None:
super().__init__(value=value, value_type=value_type, **kwargs)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "queue_callback":
if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
assert (
tx.one_graph
), "queue_callback() is only supported when Compiled Autograd is enabled with fullgraph=True"
return variables.UserFunctionVariable(
torch._dynamo.external_utils.FakeCompiledAutogradEngine.queue_callback,
source=self.source,
).call_function(
tx,
(tx.output.side_effects.get_ca_final_callbacks_var(), *args),
kwargs,
)
else:
unimplemented(
"queue_callback() is only supported when Compiled Autograd is enabled with fullgraph=True"
)
else:
unimplemented(f"torch._C._ImperativeEngine method: {name}")
class LambdaVariable(VariableTracker):
def __init__(self, fn, **kwargs) -> None:
super().__init__(**kwargs)
self.fn = fn
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
return self.fn(*args, **kwargs)
class GetAttrVariable(VariableTracker):
_nonvar_fields = {
"name",
*VariableTracker._nonvar_fields,
}
def __init__(self, obj, name, **kwargs) -> None:
super().__init__(**kwargs)
assert isinstance(obj, VariableTracker)
assert isinstance(name, str)
self.obj = obj
self.name = name
def __str__(self) -> str:
return f"{self.__class__.__name__}({self.obj}, {self.name})"
@staticmethod
def create_getattr_proxy(base_proxy: torch.fx.Proxy, attr):
return getattr(base_proxy, attr)
def as_proxy(self):
return GetAttrVariable.create_getattr_proxy(self.obj.as_proxy(), self.name)
def as_python_constant(self):
constant = self.obj.as_python_constant()
try:
return getattr(constant, self.name)
except AttributeError:
raise NotImplementedError(f"{self} is not a constant") from None
def const_getattr(self, tx: "InstructionTranslator", name):
if not isinstance(self.obj, variables.NNModuleVariable):
raise NotImplementedError
step1 = tx.output.get_submodule(self.obj.module_key)
if self.name not in step1.__dict__:
raise NotImplementedError
step2 = inspect.getattr_static(step1, self.name)
if name not in step2.__dict__:
raise NotImplementedError
return inspect.getattr_static(step2, name)
def reconstruct(self, codegen):
codegen(self.obj)
codegen.extend_output(codegen.create_load_attrs(self.name))
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
return self.obj.call_method(tx, self.name, args, kwargs)
def call_method(
self,
tx,
name,
args: List[VariableTracker],
kwargs: Dict[str, VariableTracker],
) -> VariableTracker:
if (
name in ("__getitem__", "get")
and self.name == "__dict__"
and not kwargs
and args[0].is_python_constant()
and isinstance(
self.obj,
(
variables.UserDefinedObjectVariable,
variables.NNModuleVariable,
variables.UserDefinedClassVariable,
),
)
):
obj = self.obj
key = args[0].as_python_constant()
if obj.has_key_in_generic_dict(tx, key):
# redirect to var_getattr on the original obj
return obj.var_getattr(tx, key)
# Return the default value for get
if name == "get":
if len(args) == 2:
return args[1]
else:
return variables.ConstantVariable(None)
elif (
name == "__contains__"
and self.name == "__dict__"
and len(args) == 1
and args[0].is_python_constant()
and not kwargs
and isinstance(
self.obj,
(
variables.UserDefinedObjectVariable,
variables.NNModuleVariable,
variables.UserDefinedClassVariable,
),
)
):
obj = self.obj
key = args[0].as_python_constant()
if obj.has_key_in_generic_dict(tx, key):
return variables.ConstantVariable(True)
else:
return variables.ConstantVariable(False)
return super().call_method(tx, name, args, kwargs)
class MethodWrapperVariable(VariableTracker):
def __init__(self, method_wrapper, **kwargs) -> None:
super().__init__(**kwargs)
self.method_wrapper = method_wrapper
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if is_tensor_base_attr_getter(self.method_wrapper) and isinstance(
args[0], variables.TensorVariable
):
assert len(args) == 1 and len(kwargs) == 0
return args[0].var_getattr(tx, self.method_wrapper.__self__.__name__)
super().call_function(tx, args, kwargs)
def is_python_constant(self):
return True
def as_python_constant(self):
return self.method_wrapper
class GetSetDescriptorVariable(VariableTracker):
def __init__(self, desc, **kwargs) -> None:
super().__init__(**kwargs)
self.desc = desc
def var_getattr(self, tx: "InstructionTranslator", name):
if name == "__get__" and self.source:
from .builder import VariableBuilder
return VariableBuilder(tx, AttrSource(self.source, "__get__"))(
self.desc.__get__
)
else:
return super().var_getattr(tx, name)
def is_python_constant(self):
return True
def as_python_constant(self):
return self.desc
class PythonModuleVariable(VariableTracker):
_nonvar_fields = {
"value",
"is_torch",
*VariableTracker._nonvar_fields,
}
def __init__(self, value: types.ModuleType, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
self.is_torch = self.value is torch or self.value.__name__.startswith("torch.")
def python_type(self):
return types.ModuleType
def as_python_constant(self):
return self.value
def __repr__(self) -> str:
return f"PythonModuleVariable({self.value})"
def call_hasattr(self, tx: "InstructionTranslator", name):
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
def var_getattr(self, tx: "InstructionTranslator", name):
if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
return tx.output.side_effects.load_attr(self, name)
from .builder import SourcelessBuilder, VariableBuilder
if self.is_torch or name not in self.value.__dict__:
attr_value = getattr(self.value, name)
else:
attr_value = self.value.__dict__[name]
if self.source:
new_source = AttrSource(self.source, name)
return VariableBuilder(tx, new_source)(attr_value)
else:
return SourcelessBuilder.create(tx, attr_value)
class TypingVariable(VariableTracker):
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__" and len(args) == 1:
return variables.ConstantVariable.create(
self.value[args[0].as_python_constant()],
)
unimplemented("typing")
def as_python_constant(self):
return self.value
@functools.lru_cache(maxsize=1)
def get_np_to_tnp_map():
from ..utils import NP_TO_TNP_MODULE
np_fn_to_tnp_fn = {}
for np_mod, tnp_mod in NP_TO_TNP_MODULE.items():
for fn_name, tnp_fn in tnp_mod.__dict__.items():
if callable(tnp_fn):
# some internal details do leak from tnp
# which are not part of numpy API.
if np_fn := getattr(np_mod, fn_name, None):
np_fn_to_tnp_fn[np_fn] = tnp_fn
return np_fn_to_tnp_fn
class NumpyVariable(VariableTracker):
"""
Wrapper around `numpy.*`. Currently, is able to trace a small subset of numpy functions as well as numpy dtypes.
"""
constant_fold_functions = (tnp.issubdtype,)
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
@classmethod
def can_constant_fold_through(cls, fn):
mod = fn.__module__.split(".")
assert len(mod) >= 2 and mod[:2] == ["torch", "_numpy"]
return fn in cls.constant_fold_functions
@classmethod
def get_constant_collection_for_func(cls, fn):
mod = fn.__module__.split(".")
assert len(mod) >= 2 and mod[:2] == ["torch", "_numpy"]
return np_constant_collections_map.get(fn, None)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if not config.trace_numpy:
unimplemented(f"numpy.{self.value}()")
from ..utils import numpy_to_tensor_wrapper
from .tensor import NumpyNdarrayVariable
func = get_np_to_tnp_map().get(self.value)
if func is None:
unimplemented(
f"Can't find numpy function {self.value} in torch._numpy. "
" Please file an issue to request support for this function."
)
# We are dealing with a function that produces a const collection type (np.dtype, np.iinfo/np.finfo)
if (
collection_variable_typ := self.get_constant_collection_for_func(func)
) is not None:
try:
return collection_variable_typ(
self.value(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
)
except NotImplementedError:
unimplemented(
f"{self.value.__name__} with non-const args: {args} {kwargs}"
)
else:
if (
func.__module__ == "torch._numpy.random"
and config.use_numpy_random_stream
):
msg = f"delegate '{func.__qualname__}' to NumPy itself via "
msg += f"confg.use_numpy_random_stream={config.use_numpy_random_stream}"
unimplemented(msg)
args, kwargs = NumpyNdarrayVariable.patch_args(func.__name__, args, kwargs)
if self.can_constant_fold_through(func) and (
check_unspec_or_constant_args(args, kwargs)
):
# constant fold
return variables.ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
# TODO Add all the functions that go from constants to constants to can_constant_fold_through
proxy = tx.output.create_proxy(
"call_function",
numpy_to_tensor_wrapper(func),
*proxy_args_kwargs(args, kwargs),
)
return NumpyNdarrayVariable.create(tx, proxy)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
unimplemented("numpy")
def as_python_constant(self):
return self.value
def as_proxy(self):
if config.trace_numpy and isinstance(self.value, type):
# This handles numpy dtype attributes such as np.float32
# We return a string as we don't want to serialize non-PyTorch objects in the output FX graph
# In torch/_numpy we normalize strings to their dtypes when the input is a dtype, as NumPy does
return self.value.__name__
return super().as_proxy()
# Used to keep track of NULLs pushed on the stack for Python 3.11 function calls
class NullVariable(VariableTracker):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
def __str__(self) -> str:
return "NullVariable"
def reconstruct(self, codegen):
if sys.version_info < (3, 11):
unimplemented("cannot reconstruct NullVariable in < Python 3.11")
codegen.append_output(create_instruction("PUSH_NULL"))
class DeletedVariable(VariableTracker):
"""Marker used to implement delattr()"""
class StringFormatVariable(VariableTracker):
"""
Represents a call to str.format(), we delay calling format until after the graph.
"""
_nonvar_fields = {"format_string", *VariableTracker._nonvar_fields}
@classmethod
def create(cls, format_string, sym_args, sym_kwargs):
if all(
x.is_python_constant()
for x in itertools.chain(sym_args, sym_kwargs.values())
):
return variables.ConstantVariable.create(
format_string.format(
*[v.as_python_constant() for v in sym_args],
**{k: v.as_python_constant() for k, v in sym_kwargs.items()},
)
)
return cls(format_string, list(sym_args), dict(sym_kwargs))
def __init__(self, format_string, sym_args, sym_kwargs, **kwargs) -> None:
super().__init__(**kwargs)
assert isinstance(format_string, str)
self.format_string = format_string
self.sym_args = sym_args
self.sym_kwargs = sym_kwargs
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.format_string!r}, {self.sym_args!r}, {self.sym_kwargs!r})"
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_const(self.format_string),
codegen.create_load_attr("format"),
]
),
call_function_ex=True,
)
codegen(variables.TupleVariable(self.sym_args))
kwargs = {
variables.ConstantVariable.create(k): v for k, v in self.sym_kwargs.items()
}
codegen(variables.ConstDictVariable(kwargs))
codegen.append_output(create_instruction("CALL_FUNCTION_EX", arg=1))
class DebuggingVariable(VariableTracker):
"""
Represents a call to a debugging function like print(), or something
registered to config.reorderable_logging_functions.
"""
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
@staticmethod
def is_reorderable_logging_function(obj):
return (
callable(obj)
and isinstance(obj, (types.FunctionType, types.BuiltinFunctionType))
and obj in torch._dynamo.config.reorderable_logging_functions
)
def call_function(self, tx: "InstructionTranslator", args, kwargs):
if tx.export:
# For export cases, we can just make debugging functions no-ops
return
if not self.can_reorder_logs(self.value, args, kwargs):
unimplemented(
f"Reordering debugging function {self.value} "
f"with inputs {args} {kwargs} is not yet implemented."
)
tx.debug_locals.append((self, list(args)))
def reconstruct(self, codegen):
return self.source.reconstruct(codegen)
@staticmethod
def can_reorder_logs(fn, args, kwargs) -> True:
"""
Run some additional checks for what sort of function calls can we
actually reorder.
"""
allowed_input_types = (
variables.TensorVariable,
variables.ConstantVariable,
StringFormatVariable,
)
flat_args = pytree.tree_leaves([args, kwargs])
for arg in flat_args:
if not isinstance(arg, allowed_input_types):
return False
return True
class LoggingLoggerVariable(VariableTracker):
"""
Represents a call to any of logging.Logger methods
"""
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if tx.export:
# For export cases, we can just make debugging functions no-ops
return
unimplemented("Logger not supported for non-export cases")
class ConstantLikeVariable(VariableTracker):
"""self.value is a compile-time constant, but not a literal"""
_error_prefix = "ConstantLikeVariable"
try:
from numpy import (
dtype as np_dtype,
floating as np_floating,
generic as np_generic,
)
except ImportError:
np_floating = type("invalid_type", (), {})
np_dtype = type("invalid_type", (), {})
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def as_python_constant(self):
return self.value
def call_method(
self,
tx,
name,
args: List[VariableTracker],
kwargs: Dict[str, VariableTracker],
) -> VariableTracker:
try:
# we only support constant propagation for methods
cargs = [x.as_python_constant() for x in args]
ckwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
except NotImplementedError:
unimplemented(f"{self._error_prefix}.{name}(*{args}, **{kwargs})")
result = getattr(self.value, name)(*cargs, **ckwargs)
if variables.ConstantVariable.is_literal(result):
return variables.ConstantVariable.create(result)
if isinstance(result, re.Match):
return ConstantRegexMatchVariable(result)
unimplemented(f"{self._error_prefix}.{name}() -> {result}")
def var_getattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
result = getattr(self.value, name)
if isinstance(result, self.np_floating):
result = float(result)
if isinstance(result, self.np_dtype):
return NumpyDTypeVariable(result)
if isinstance(result, type) and issubclass(result, self.np_generic):
# things like x.dtype.type
return NumpyVariable(result)
if variables.ConstantVariable.is_literal(result):
return variables.ConstantVariable.create(result)
return GetAttrVariable(self, name)
class RegexPatternVariable(ConstantLikeVariable):
_error_prefix = "re.Pattern"
class ConstantRegexMatchVariable(ConstantLikeVariable):
_error_prefix = "re.Match"
class TorchVersionVariable(ConstantLikeVariable):
_error_prefix = "torch.__version__"
def __init__(self, **kwargs) -> None:
kwargs.setdefault("value", torch.__version__)
assert kwargs["value"] is torch.__version__
super().__init__(**kwargs)
class NumpyTypeInfoVariable(ConstantLikeVariable):
_error_prefix = "np.iinfo/np.finfo"
class NumpyDTypeVariable(ConstantLikeVariable):
_error_prefix = "np.dtype[...]"
def as_proxy(self):
"""Similar to how numpy dtype descriptors (e.g. np.float32 ) are handled by NumpyVariable:
np.dtype() objects are serialized as strings, torch._numpy wrappers will normalize to the torch dtype.
This also handles unsupported things nicely (i.e. structured arrays and object arrays).
"""
return self.value.type.__name__
np_constant_collections_map = {
tnp.finfo: NumpyTypeInfoVariable,
tnp.iinfo: NumpyTypeInfoVariable,
tnp.dtype: NumpyDTypeVariable,
}
class RandomClassVariable(VariableTracker):
"""random.Random"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
def call_function(self, tx: "InstructionTranslator", args, kwargs):
if len(args) > 1:
unimplemented("random.Random() with > 1 arg")
elif kwargs:
unimplemented("random.Random() with kwargs")
seed = variables.ConstantVariable.create(None) if len(args) == 0 else args[0]
return RandomVariable(seed=seed, mutable_local=variables.base.MutableLocal())
class RandomVariable(VariableTracker):
"""random.Random()
Implemented by wrapping a VariableTracker around a random.Random object.
The supported methods for the random.Random object cannot be overriden.
Assumes that random objects behave the same given a set seed or state.
"""
_nonvar_fields = {
"random",
*VariableTracker._nonvar_fields,
}
_supported_fn_names = {
"random",
"randint",
"randrange",
"uniform",
}
def __init__(
self,
rand: Optional[random.Random] = None,
seed: Optional[VariableTracker] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
if rand is not None:
assert self.is_supported_random_obj(rand)
self.random = random.Random()
self.random.setstate(rand.getstate())
else:
seed = seed.as_python_constant() if seed is not None else None
self.random = random.Random(seed)
def python_type(self):
return random.Random
def as_python_constant(self):
return self.random
@staticmethod
def is_supported_random_obj(val):
if type(val) is not random.Random:
return False
for name in itertools.chain(
RandomVariable._supported_fn_names, ("seed", "getstate", "setstate")
):
if not hasattr(val, name):
return False
meth = getattr(val, name)
if inspect.isbuiltin(meth):
# e.g. random.Random.random
if meth != getattr(random.Random, name).__get__(val):
return False
else:
if getattr(meth, "__func__", None) is not getattr(random.Random, name):
return False
return True
@staticmethod
def check_state(state):
assert type(state) is tuple
assert type(state[0]) is int
assert type(state[1]) is tuple
assert all(type(x) is int for x in state[1])
assert state[2] is None or type(state[2]) is float
@staticmethod
def wrap_state(state):
RandomVariable.check_state(state)
return variables.TupleVariable(
[
variables.ConstantVariable.create(state[0]),
variables.TupleVariable(
[variables.ConstantVariable.create(x) for x in state[1]]
),
variables.ConstantVariable.create(state[2]),
]
)
@staticmethod
def unwrap_state(state):
state_obj = state.as_python_constant()
RandomVariable.check_state(state_obj)
return state_obj
def call_method(
self,
tx,
name,
args: List[VariableTracker],
kwargs: Dict[str, VariableTracker],
) -> VariableTracker:
if name == "seed":
tx.output.side_effects.mutation(self)
self.random.seed(
*[x.as_python_constant() for x in args],
**{key: val.as_python_constant() for key, val in kwargs.items()},
)
return variables.ConstantVariable.create(None)
elif name == "getstate":
return self.wrap_state(self.random.getstate())
elif name == "setstate":
tx.output.side_effects.mutation(self)
self.random.setstate(self.unwrap_state(args[0]))
return variables.ConstantVariable.create(None)
elif name in self._supported_fn_names:
tx.output.side_effects.mutation(self)
state = self.random.getstate()
def call_random_meth(*args, **kwargs):
r = random.Random()
r.setstate(state)
return getattr(r, name)(*args, **kwargs)
# self.random state not actually updated by call_random_meth, so update here
# by calling the method
getattr(self.random, name)(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
return call_random_fn(tx, call_random_meth, args, kwargs)
return super().call_method(tx, name, args, kwargs)
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_python_module(random),
codegen.create_load_attr("Random"),
]
)
)
codegen.call_function(0, False)
# NOTE using add_push_null may result in NULL being duplicated
# so defer the push_null to call_function
codegen.dup_top()
codegen.load_attr("setstate")
codegen(self.wrap_state(self.random.getstate()))
codegen.call_function(1, True)
codegen.pop_top()