pytorch/test/dynamo/test_base_hop.py
rzou fea718f062 [BaseHOP] change hop(subgraph, operands) to hop(subgraph, *operands) (#146730)
Our three main users are OK with this, with two of them (foreach_map,
invoke_quant) prefering it like this.

I was originally worried about BC issues (this now means you cannot add
any positional args) but I think that's not a concern -- one can always
add kwonly args.

Test Plan
- tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146730
Approved by: https://github.com/ydwu4, https://github.com/mlazos
2025-02-20 02:30:36 +00:00

189 lines
6.7 KiB
Python

# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo.test_case
import torch._functorch.config
import torch.utils.checkpoint
from torch._dynamo.testing import (
AotEagerAndRecordGraphs,
EagerAndRecordGraphs,
normalize_gm,
)
from torch.testing._internal.inductor_utils import HAS_CUDA
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
def normalize_graph(gm):
return normalize_gm(gm.print_readable(print_output=False))
class InvokeQuantTest(torch._higher_order_ops.BaseHOP):
def __init__(self):
super().__init__("invoke_quant_test")
def __call__(self, subgraph, *operands, scheme):
return super().__call__(subgraph, *operands, scheme=scheme)
invoke_quant_test = InvokeQuantTest()
class BaseHOPTest(torch._dynamo.test_case.TestCase):
# TODO: flip to False later, we're landing a refactor PR and don't want to merge conflict
@torch._dynamo.config.patch(assume_static_by_default=True)
def test_dynamo(self):
def inner(x, y):
return (x @ y).sin().cos()
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
backend = EagerAndRecordGraphs()
@torch.compile(backend=backend)
def f(x, y):
return invoke_quant_test(inner, x, y, scheme="nf4")
out = f(x, y)
self.assertEqual(out, inner(x, y))
assert len(backend.graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 3]", L_y_: "f32[3, 3]"):
l_x_ = L_x_
l_y_ = L_y_
subgraph_0 = self.subgraph_0
invoke_quant_test = torch.ops.higher_order.invoke_quant_test(subgraph_0, l_x_, l_y_, scheme = 'nf4'); subgraph_0 = l_x_ = l_y_ = None
getitem: "f32[3, 3]" = invoke_quant_test[0]; invoke_quant_test = None
return (getitem,)
class subgraph_0(torch.nn.Module):
def forward(self, l_x_: "f32[3, 3]", l_y_: "f32[3, 3]"):
matmul: "f32[3, 3]" = l_x_ @ l_y_; l_x_ = l_y_ = None
sin: "f32[3, 3]" = matmul.sin(); matmul = None
cos: "f32[3, 3]" = sin.cos(); sin = None
return (cos,)
""", # NOQA: B950
)
@torch._dynamo.config.patch(assume_static_by_default=True)
def test_aot_eager(self):
def inner(x, y):
return (x @ y).sin_().cos()
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
backend = AotEagerAndRecordGraphs()
@torch.compile(backend=backend)
def f(x, y):
return invoke_quant_test(inner, x, y, scheme="nf4")
out = f(x, y)
result = torch.autograd.grad(out, x, y)
out = inner(x, y)
expected = torch.autograd.grad(out, x, y)
self.assertEqual(result, expected)
assert len(backend.fw_graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.fw_graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, primals_1: "f32[3, 3]", primals_2: "f32[3, 3]"):
subgraph0 = self.subgraph0
invoke_quant_test = torch.ops.higher_order.invoke_quant_test(subgraph0, primals_1, primals_2, scheme = 'nf4'); subgraph0 = None
getitem: "f32[3, 3]" = invoke_quant_test[0]; invoke_quant_test = None
return (getitem, primals_1, primals_2)
class subgraph0(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 3]", arg1_1: "f32[3, 3]"):
mm: "f32[3, 3]" = torch.ops.aten.mm.default(arg0_1, arg1_1); arg0_1 = arg1_1 = None
sin: "f32[3, 3]" = torch.ops.aten.sin.default(mm); mm = None
cos: "f32[3, 3]" = torch.ops.aten.cos.default(sin); sin = None
return (cos,)
""", # NOQA: B950
)
assert len(backend.bw_graphs) == 1
self.assertExpectedInline(
normalize_graph(backend.bw_graphs[0]),
"""\
class GraphModule(torch.nn.Module):
def forward(self, primals_1: "f32[3, 3]", primals_2: "f32[3, 3]", tangents_1: "f32[3, 3]"):
subgraph1 = self.subgraph1
invoke_quant_test_1 = torch.ops.higher_order.invoke_quant_test(subgraph1, primals_1, primals_2, tangents_1, scheme = 'nf4'); subgraph1 = primals_1 = primals_2 = tangents_1 = None
getitem_1: "f32[3, 3]" = invoke_quant_test_1[0]
getitem_2: "f32[3, 3]" = invoke_quant_test_1[1]; invoke_quant_test_1 = None
return (getitem_1, getitem_2)
class subgraph1(torch.nn.Module):
def forward(self, arg0_1: "f32[3, 3]", arg1_1: "f32[3, 3]", arg2_1: "f32[3, 3]"):
mm: "f32[3, 3]" = torch.ops.aten.mm.default(arg0_1, arg1_1)
clone: "f32[3, 3]" = torch.ops.aten.clone.default(mm)
sin: "f32[3, 3]" = torch.ops.aten.sin.default(mm); mm = None
cos: "f32[3, 3]" = torch.ops.aten.cos.default(sin); cos = None
sin_1: "f32[3, 3]" = torch.ops.aten.sin.default(sin); sin = None
neg: "f32[3, 3]" = torch.ops.aten.neg.default(sin_1); sin_1 = None
mul: "f32[3, 3]" = torch.ops.aten.mul.Tensor(arg2_1, neg); arg2_1 = neg = None
cos_1: "f32[3, 3]" = torch.ops.aten.cos.default(clone); clone = None
mul_1: "f32[3, 3]" = torch.ops.aten.mul.Tensor(mul, cos_1); mul = cos_1 = None
t: "f32[3, 3]" = torch.ops.aten.t.default(arg0_1); arg0_1 = None
mm_1: "f32[3, 3]" = torch.ops.aten.mm.default(t, mul_1); t = None
t_1: "f32[3, 3]" = torch.ops.aten.t.default(arg1_1); arg1_1 = None
mm_2: "f32[3, 3]" = torch.ops.aten.mm.default(mul_1, t_1); mul_1 = t_1 = None
return (mm_2, mm_1)
""", # NOQA: B950
)
def test_aliasing_mutation_error(self):
def inner(x, y):
return x
def inner2(x, y):
x.sin_()
return x + y
x = torch.randn(3, 3)
y = torch.randn(3, 3)
@torch.compile(backend="eager", fullgraph=True)
def f(inner, x, y):
return invoke_quant_test(inner, x, y, scheme="nf4")
with self.assertRaisesRegex(RuntimeError, "aliases of the inputs"):
f(inner, x, y)
with self.assertRaisesRegex(RuntimeError, "inputs are mutated"):
f(inner2, x, y)
def test_eager_call(self):
def inner(x, y):
return x + y
x = torch.randn(3, 3)
y = torch.randn(3, 3)
with self.assertRaisesRegex(RuntimeError, "torch.fx.GraphModule"):
invoke_quant_test(inner, x, y, scheme="nf4")
from functorch import make_fx
result = make_fx(inner)(x, y)
# smoke test
invoke_quant_test(result, x, y, scheme="nf4")
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()