pytorch/torch/utils/data/distributed.py
Jie a3fb004b18 (#12474)
Summary:
Modifies the DistributedSampler logic. Now each process samples elements with
a given interval, instead of a consecutive section.

  This eliminates the possibility where the DataLoader uses padded data while
dropping the real data. It happens when:
  1. DistributedSampler padded data; and
  2. DataLoader drops_last is effectively true, and drops less then the number
of padded data.
  from the example down, we see that data (10, 11, 12) are padded through
duplicating data sample (1, 2, 3)
  The old sampler drops legit original data (3, 6, 9) and introduces duplication
(10, 11) into the training set; while the new sampler logic samples correct data
points from the data set.
  This example has been added to dataloader unit test

example:
```
  data after shuffle: 1, 2, 3, 4, 5, 6, 7, 8, 9
  padded data : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

  old sampler:       ->  DataLoader with (batch_size=2 and drop_last=True)
   p 1: 1, 2, 3          1, 2
   p 2: 4, 5, 6          4, 5
   p 3: 7, 8, 9          7, 8
   p 4:10,11,12         10,11

  new sampler:       ->
   p 1: 1, 5, 9          1, 5
   p 2: 2, 6,10          2, 6
   p 3: 3, 7,11          3, 7
   p 4: 4, 8,12          4, 8
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12474

Differential Revision: D10260410

Pulled By: SsnL

fbshipit-source-id: 710856571260f42ce25955b81a5b8008e04938cf
2018-10-09 11:23:50 -07:00

62 lines
2.1 KiB
Python

import math
import torch
from . import Sampler
import torch.distributed as dist
class DistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch