pytorch/torch/optim/lr_scheduler.pyi
Jon Malmaud 1b25fdbcd0 More type stubs (#18511)
Summary:
Added stubs for:

* The `device` module
* The `cuda` module
* Parts of the `optim` module
* Began adding stubs for the `autograd` module. I'll annotate more later but `no_grad` and friends are probably the most used exports from it so it seemed like a good place to start.

This would close #16996, although comments on that issue reference other missing stubs so maybe it's worth keeping open as an umbrella issue.

The big remaining missing package is `nn`.

Also added a `py.typed` file so mypy will pick up on the type stubs. That closes #17639.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18511

Differential Revision: D14715053

Pulled By: ezyang

fbshipit-source-id: 9e4882ac997063650e6ce47604b3eaf1232c61c9
2019-04-01 16:03:58 -07:00

32 lines
1.5 KiB
Python

from typing import Iterable, Any, Optional
from .optimizer import Optimizer
class _LRScheduler:
def __init__(self, optimizer: Optimizer, last_epoch: int=...) -> None: ...
def state_dict(self) -> dict: ...
def load_state_dict(self, state_dict: dict) -> None: ...
def get_lr(self) -> float: ...
def step(self, epoch: int) -> None: ...
class LambdaLR(_LRScheduler):
def __init__(self, optimizer: Optimizer, lr_lambda: float, last_epoch: int=...) -> None: ...
class StepLR(_LRScheduler):
def __init__(self, optimizer: Optimizer, step_size: int, gamma: float=..., last_epoch: int=...) -> None:...
class MultiStepLR(_LRScheduler):
def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float=..., last_epoch: int=...) -> None: ...
class ExponentialLR(_LRScheduler):
def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int=...) -> None: ...
class CosineAnnealingLr(_LRScheduler):
def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float, last_epoch: int=...) -> None: ...
class ReduceLROnPlateau:
in_cooldown: bool
def __init__(self, optimizer: Optimizer, mode: str=..., factor: float=..., patience: int=..., verbose: bool=..., threshold: float=..., threshold_mode: str=..., cooldown: int=..., min_lr: float=..., eps: float=...) -> None: ...
def step(self, metrics: Any, epoch: Optional[int]=...) -> None: ...
def state_dict(self) -> dict: ...
def load_state_dict(self, state_dict: dict): ...