mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: We can't introduce aliasing to a graph output, since they may be mutated after. Pull Request resolved: https://github.com/pytorch/pytorch/pull/19576 Differential Revision: D15057734 Pulled By: eellison fbshipit-source-id: 33594c05d985a0c58edebd6252e1ee2c0efb6f0e
106 lines
2.9 KiB
C++
106 lines
2.9 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/irparser.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/constant_propagation.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
#include "test/cpp/jit/test_base.h"
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
void testConstantPooling() {
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
script::parseIR(
|
|
R"IR(
|
|
graph():
|
|
%8 : int = prim::Constant[value=1]()
|
|
%10 : int = prim::Constant[value=1]()
|
|
return (%8, %10)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
script::parseIR(
|
|
R"IR(
|
|
graph(%cond : Tensor):
|
|
%a : str = prim::Constant[value="bcd"]()
|
|
%3 : bool = prim::Bool(%cond)
|
|
%b : str = prim::If(%3)
|
|
block0():
|
|
%b.1 : str = prim::Constant[value="abc"]()
|
|
-> (%b.1)
|
|
block1():
|
|
%b.2 : str = prim::Constant[value="abc"]()
|
|
-> (%b.2)
|
|
%7 : (str, str) = prim::TupleConstruct(%a, %b)
|
|
return (%7)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant[value=\"abc\"]", 1, /*exactly*/ true)
|
|
->check_count("prim::Constant[value=\"bcd\"]", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
script::parseIR(
|
|
R"IR(
|
|
graph():
|
|
%2 : int = prim::Constant[value=2]()
|
|
%1 : int = prim::Constant[value=1]()
|
|
%5 : int? = prim::Constant()
|
|
%7 : Device? = prim::Constant()
|
|
%15: bool = prim::Constant[value=0]()
|
|
%10 : int = prim::Constant[value=6]()
|
|
%3 : int[] = prim::ListConstruct(%1, %2)
|
|
%x : Tensor = aten::tensor(%3, %5, %7, %15)
|
|
%y : Tensor = aten::tensor(%3, %10, %7, %15)
|
|
%9 : int[] = prim::ListConstruct(%1, %2)
|
|
%z : Tensor = aten::tensor(%9, %10, %7, %15)
|
|
%f = prim::Print(%x, %y, %z)
|
|
return (%1)
|
|
)IR",
|
|
&*graph);
|
|
// three tensors created - two different devices among the three
|
|
// don't have good support for parsing tensor constants
|
|
ConstantPropagation(graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("Float(2) = prim::Constant", 1, /*exactly*/ true)
|
|
->check_count("Long(2) = prim::Constant", 1, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
// don't create aliasing of graph outputs in constant pooling
|
|
{
|
|
auto graph = std::make_shared<Graph>();
|
|
script::parseIR(
|
|
R"IR(
|
|
graph(%cond : Tensor):
|
|
%a : Tensor = prim::Constant()
|
|
%b : Tensor = prim::Constant()
|
|
%c : Tensor = prim::Constant()
|
|
%1 = prim::Print(%c)
|
|
return (%a, %b)
|
|
)IR",
|
|
&*graph);
|
|
ConstantPooling(graph);
|
|
testing::FileCheck()
|
|
.check_count("prim::Constant", 2, /*exactly*/ true)
|
|
->run(*graph);
|
|
}
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|