mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14958 Test with multiple threads Reviewed By: jianyuh Differential Revision: D13394791 fbshipit-source-id: 931a6c3bda15ebc816807e537dd0841c383e7a6f
68 lines
2.2 KiB
Python
68 lines
2.2 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import collections
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core, dyndep, workspace
|
|
from hypothesis import given
|
|
|
|
|
|
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
|
|
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
|
|
|
|
|
|
class DNNLowPSigmoidOpTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(1024, 2048), **hu.gcs_cpu_only)
|
|
def test_dnnlowp_sigmoid(self, size, gc, dc):
|
|
|
|
X = (np.random.rand(size) * 20 - 10).astype(np.float32)
|
|
|
|
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
|
|
outputs = []
|
|
|
|
op_engine_list = [
|
|
("Sigmoid", ""),
|
|
("Sigmoid", "DNNLOWP"),
|
|
("Int8Sigmoid", "DNNLOWP"),
|
|
]
|
|
|
|
for op_type, engine in op_engine_list:
|
|
net = core.Net("test_net")
|
|
|
|
if engine == "DNNLOWP":
|
|
quantize = core.CreateOperator(
|
|
"Quantize",
|
|
["X"],
|
|
["X_q"],
|
|
engine=engine,
|
|
device_option=gc,
|
|
followed_by="Sigmoid",
|
|
)
|
|
net.Proto().op.extend([quantize])
|
|
|
|
sigmoid = core.CreateOperator(
|
|
op_type,
|
|
["X_q" if engine == "DNNLOWP" else "X"],
|
|
["Y_q" if engine == "DNNLOWP" else "Y"],
|
|
engine=engine,
|
|
device_option=gc,
|
|
)
|
|
net.Proto().op.extend([sigmoid])
|
|
|
|
if engine == "DNNLOWP":
|
|
dequantize = core.CreateOperator(
|
|
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([dequantize])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.run(net)
|
|
outputs.append(
|
|
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
|
|
)
|
|
|
|
for o in outputs:
|
|
np.testing.assert_allclose(o.Y, outputs[0].Y, atol=0.01, rtol=0)
|