mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14958 Test with multiple threads Reviewed By: jianyuh Differential Revision: D13394791 fbshipit-source-id: 931a6c3bda15ebc816807e537dd0841c383e7a6f
52 lines
1.7 KiB
Python
52 lines
1.7 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import collections
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core, dyndep, workspace
|
|
from dnnlowp_test_utils import check_quantized_results_close
|
|
from hypothesis import given
|
|
|
|
|
|
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
|
|
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
|
|
|
|
|
|
class DNNLowPDequantizeOpTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(1024, 2048), **hu.gcs_cpu_only)
|
|
def test_dnnlowp_dequantize(self, size, gc, dc):
|
|
min_ = -10.0
|
|
max_ = 20.0
|
|
X = (np.random.rand(size) * (max_ - min_) + min_).astype(np.float32)
|
|
|
|
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
|
|
outputs = []
|
|
|
|
op_type_list = ["Dequantize", "Int8Dequantize"]
|
|
engine = "DNNLOWP"
|
|
|
|
outputs.append(Output(X, op_type="", engine=""))
|
|
|
|
for op_type in op_type_list:
|
|
net = core.Net("test_net")
|
|
|
|
quantize = core.CreateOperator(
|
|
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([quantize])
|
|
|
|
dequantize = core.CreateOperator(
|
|
op_type, ["X_q"], ["Y"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([dequantize])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.run(net)
|
|
outputs.append(
|
|
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
|
|
)
|
|
|
|
check_quantized_results_close(outputs)
|