mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13856 Codemod generated with clangr shard mode, 25 files per diff, motivation: https://github.com/pytorch/pytorch/pull/12407 Reviewed By: smessmer Differential Revision: D13007310 fbshipit-source-id: 941f064ef8934bb17fbfb706e6ed3db173b5d268
70 lines
2.2 KiB
C++
70 lines
2.2 KiB
C++
#include "caffe2/operators/summarize_op.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <>
|
|
bool SummarizeOp<float, CPUContext>::RunOnDevice() {
|
|
auto& X = Input(0);
|
|
const auto N = X.numel();
|
|
CAFFE_ENFORCE_GT(N, 0);
|
|
|
|
const float* Xdata = X.data<float>();
|
|
double mean = 0;
|
|
float max = Xdata[0];
|
|
float min = Xdata[0];
|
|
for (auto i = 0; i < N; ++i) {
|
|
mean += static_cast<double>(Xdata[i]) / N;
|
|
max = std::max(max, Xdata[i]);
|
|
min = std::min(min, Xdata[i]);
|
|
}
|
|
// We will simply do a two-pass. More efficient solutions can be written but
|
|
// I'll keep code simple for now.
|
|
double standard_deviation = 0;
|
|
for (auto i = 0; i < N; ++i) {
|
|
double diff = Xdata[i] - mean;
|
|
standard_deviation += diff * diff;
|
|
}
|
|
// Unbiased or biased? Let's do unbiased now.
|
|
standard_deviation = N == 1 ? 0 : std::sqrt(standard_deviation / (N - 1));
|
|
if (to_file_) {
|
|
(*log_file_) << min << " " << max << " " << mean << " "
|
|
<< standard_deviation << std::endl;
|
|
}
|
|
if (OutputSize()) {
|
|
auto* Y = Output(0, {NUM_STATS}, at::dtype<float>());
|
|
float* Ydata = Y->template mutable_data<float>();
|
|
Ydata[MIN_IDX] = min;
|
|
Ydata[MAX_IDX] = max;
|
|
Ydata[MEAN_IDX] = static_cast<float>(mean);
|
|
Ydata[STD_IDX] = static_cast<float>(standard_deviation);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(Summarize, SummarizeOp<float, CPUContext>);
|
|
|
|
// Input: X; output: if set, a summarized Tensor of shape 4, with the values
|
|
// being min, max, mean and std respectively.
|
|
OPERATOR_SCHEMA(Summarize)
|
|
.NumInputs(1)
|
|
.NumOutputs(0, 1)
|
|
.SetDoc(R"DOC(
|
|
Summarize computes four statistics of the input tensor (Tensor)- min,
|
|
max, mean and standard deviation. The output will be written to a 1-D tensor of
|
|
size 4 if an output tensor is provided. Else, if the argument 'to_file' is
|
|
greater than 0, the values are written to a log file in the root folder.
|
|
)DOC")
|
|
.Arg(
|
|
"to_file",
|
|
"(int, default 0) flag to indicate if the summarized "
|
|
"statistics have to be written to a log file.")
|
|
.Input(0, "data", "The input data as Tensor.")
|
|
.Output(
|
|
0,
|
|
"output",
|
|
"1-D tensor (Tensor) of size 4 containing min, "
|
|
"max, mean and standard deviation");
|
|
|
|
SHOULD_NOT_DO_GRADIENT(Summarize);
|
|
} // namespace caffe2
|