pytorch/caffe2/operators/sparse_normalize_op.cc
Jerry Zhang 508f676c50 Rename ndim() -> dim() - 5/6
Summary:
Codemod generated with clangr shard mode, 50 files per diff,
clangr code(ndim()->dim()): diffusion/FBS/browse/master/fbcode/caffe2/caffe2/fb/codemods/TensorMethodRename.cpp

Reviewed By: salexspb

Differential Revision: D12935787

fbshipit-source-id: 303d71d3eb050789af2ab9575e5dcc48f6037086
2018-11-06 16:38:35 -08:00

79 lines
2.5 KiB
C++

#include "caffe2/operators/sparse_normalize_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
bool SparseNormalizeOp<float, CPUContext>::RunOnDevice() {
CAFFE_ENFORCE_EQ(
Input(PARAM).size_from_dim(1),
Input(GRAD).size_from_dim(Input(INDICES).dim()));
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <>
template <typename SIndex>
bool SparseNormalizeOp<float, CPUContext>::DoRunWithType() {
const auto* indices = Input(INDICES).template data<SIndex>();
const auto* paramIn = Input(PARAM).template data<float>();
auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
const float kEps = 1e-12f;
// n: number of sparse embeddings to be normalized
auto n = Input(INDICES).numel();
if (n == 0) {
return true;
}
// embedding length, e.g. 32, 64, 128
auto block_size = Input(GRAD).numel() / n;
for (int i = 0; i < n; ++i) {
auto idx = indices[i];
auto offsetIdx = idx * block_size;
ConstEigenVectorMap<float> xVec(paramIn + offsetIdx, block_size);
auto norm = xVec.template lpNorm<2>();
if (use_max_norm_ && norm <= norm_) {
continue;
}
math::Scale(
block_size,
norm_ / (norm + kEps),
paramOut + offsetIdx,
paramOut + offsetIdx,
&context_);
}
return true;
}
REGISTER_CPU_OPERATOR(SparseNormalize, SparseNormalizeOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseNormalize)
.NumInputs(3)
.NumOutputs(1)
.Input(0, "param", "Parameters to be normalized")
.Input(1, "indices", "Sparse indices")
.Input(2, "grad", "Gradient computed")
.Output(0, "output_param", "Normalized parameters")
.EnforceOneToOneInplace()
.Arg(
"use_max_norm",
"A bool variable to control whether to use max norm \
or constant norm. When use_max_norm = false, constant norm is used so that \
all the embedding vectors are scaled to have a L2 norm equals to A \
(see blow arugment norm=A). If use_max_norm = true, \
max norm is used so that embedding is scaled so that its l2 norm is no larger \
than A. If an embedding's norm is less than A originally, \
the embedding is left unchanged.\
The default is True.")
.Arg("norm", "L2 norm of the embedding. The default is 1.0.")
.SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");
SHOULD_NOT_DO_GRADIENT(SparseNormalize);
} // namespace caffe2