pytorch/caffe2/operators/sin_op.cc
Orion Reblitz-Richardson 7f33ec55b2 Fix Eigen issue on OS X with CUDA and nvcc compile (#9350)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9350

Re-apply #9270

Breaking this out of #8338

This takes care of the Eigen failure we saw on Mac CUDA builds when BUILD_CAFFE2 and BUILD_ATEN were removed. Fix is to isolate Eigen from headers included by cu files and processed by nvcc. This was worked on with smessmer.

Reviewed By: mingzhe09088

Differential Revision: D8794431

fbshipit-source-id: de656334af46c697802073f8e8d9a6aeb9ca65a7
2018-07-11 14:00:05 -07:00

109 lines
2.3 KiB
C++

#include "caffe2/operators/sin_op.h"
#include "caffe2/utils/eigen_utils.h"
#include <algorithm>
#include <functional>
namespace caffe2 {
template <>
template <typename T>
bool SinGradientFunctor<CPUContext>::Forward(
const std::vector<int>& X_dims,
const std::vector<int>& /* dY_dims */,
const T* X,
const T* dY,
T* dX,
CPUContext* /* context */) const {
const int size = std::accumulate(
X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>());
ConstEigenVectorArrayMap<T> dY_arr(dY, size);
ConstEigenVectorArrayMap<T> X_arr(X, size);
EigenVectorMap<T>(dX, size) = dY_arr * X_arr.cos();
return true;
}
REGISTER_CPU_OPERATOR(
Sin,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, SinFunctor<CPUContext>>);
REGISTER_CPU_OPERATOR(
SinGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
SinGradientFunctor<CPUContext>>);
OPERATOR_SCHEMA(Sin)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the sine of the given input tensor, element-wise.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sin_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Sin",
["X"],
["Y"]
)
workspace.FeedBlob("X", np.random.rand(5).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
```
**Result**
```
X: [0.8466114 0.1803606 0.5601509 0.04959291 0.64770824]
Y: [0.74903965 0.17938434 0.5313141 0.04957259 0.60336035]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
.Output(
0,
"Y",
"*(type: Tensor`<float>`)* Output tensor calculated as the sine of the input tensor, element-wise.");
OPERATOR_SCHEMA(SinGradient).NumInputs(2).NumOutputs(1).IdenticalTypeAndShape();
namespace {
class GetSinGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SinGradient",
"",
std::vector<std::string>{I(0), GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Sin, GetSinGradient);
} // namespace caffe2