mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13944 Pull Request resolved: https://github.com/pytorch/pytorch/pull/13854 Codemod generated with clangr shard mode, 25 files per diff, motivation: https://github.com/pytorch/pytorch/pull/12407 Reviewed By: ezyang Differential Revision: D13054836 fbshipit-source-id: 5de07a156687f1ee607d0450410881d9176a87a7
90 lines
2.7 KiB
C++
90 lines
2.7 KiB
C++
#ifndef CAFFE2_OPERATORS_REVERSE_PACKED_SEGS_OP_H_
|
|
#define CAFFE2_OPERATORS_REVERSE_PACKED_SEGS_OP_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/operator.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class ReversePackedSegsOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
USE_SIMPLE_CTOR_DTOR(ReversePackedSegsOp);
|
|
USE_DISPATCH_HELPER;
|
|
|
|
bool RunOnDevice() override {
|
|
return DispatchHelper<TensorTypes<float, double, int, long, bool>>::call(
|
|
this, Input(DATA));
|
|
}
|
|
|
|
template <typename T>
|
|
bool DoRunWithType() {
|
|
if (Input(LENGTHS).template IsType<int>()) {
|
|
DoRunWithLengthType<T, int>();
|
|
} else {
|
|
DoRunWithLengthType<T, long>();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
INPUT_TAGS(DATA, LENGTHS);
|
|
|
|
template <typename T, typename LengthType>
|
|
void DoRunWithLengthType() {
|
|
const auto& data = Input(DATA);
|
|
const auto& lengths = Input(LENGTHS);
|
|
|
|
CAFFE_ENFORCE(
|
|
data.dim() == 3,
|
|
"DATA should be 3-D tensor <lengths, "
|
|
"segments, embeddings>");
|
|
CAFFE_ENFORCE(lengths.dim() == 1, "LENGTH should be 1-D");
|
|
|
|
const auto shape = data.sizes();
|
|
auto* output = Output(0, shape, at::dtype<T>());
|
|
|
|
const auto max_length = data.sizes()[0];
|
|
const auto batch_size = data.sizes()[1];
|
|
const auto block_size = data.sizes()[2];
|
|
CAFFE_ENFORCE(
|
|
lengths.sizes()[0] == batch_size,
|
|
"lenths size should be"
|
|
" equal to batch size");
|
|
|
|
const T* data_ptr = data.template data<T>();
|
|
const LengthType* lengths_ptr = lengths.template data<LengthType>();
|
|
|
|
vector<LengthType> lengths_host(batch_size);
|
|
context_.template CopyToCPU<LengthType>(
|
|
batch_size, lengths_ptr, &lengths_host[0]);
|
|
context_.FinishDeviceComputation();
|
|
|
|
T* rev_data_ptr = output->template mutable_data<T>();
|
|
for (int64_t i = 0; i < batch_size; i++) {
|
|
const auto& seg_length = lengths_host[i];
|
|
CAFFE_ENFORCE_LE(seg_length, max_length);
|
|
int64_t j = 0;
|
|
for (; j < seg_length; j++) {
|
|
const T* data_block_ptr = data_ptr + (j * batch_size + i) * block_size;
|
|
T* rev_data_block_ptr =
|
|
rev_data_ptr + ((seg_length - 1 - j) * batch_size + i) * block_size;
|
|
context_.template CopySameDevice<T>(
|
|
block_size, data_block_ptr, rev_data_block_ptr);
|
|
}
|
|
for (; j < max_length; j++) {
|
|
const T* data_block_ptr = data_ptr + (j * batch_size + i) * block_size;
|
|
T* rev_data_block_ptr =
|
|
rev_data_ptr + (j * batch_size + i) * block_size;
|
|
context_.template CopySameDevice<T>(
|
|
block_size, data_block_ptr, rev_data_block_ptr);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_REVERSE_PACKED_SEGS_OP_H_
|