pytorch/caffe2/operators/prepend_dim_op.h
Junjie Bai 246f5c412e Revert "Tensor construction codemod(raw_mutable_data) (#16373)" (#18680)
Summary:
This reverts commit d73c830e23.

We have observed significant perf drop when training ResNext101 with multiple amd GPUs:

Before:
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang7-rocmdeb-ubuntu16.04-bench/1636/console
2 GPUs ResNext training got 150\~160 imgs/sec
4 GPUs ResNext training got 270\~280 imgs/sec

After:
https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-clang7-rocmdeb-ubuntu16.04-bench/1637/console
Both 2 and 4 GPUs ResNext training drop to 110\~120 imgs/sec

Similar perf drop are seen on ResNet50 training jobs as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18680

Differential Revision: D14702941

Pulled By: bddppq

fbshipit-source-id: 828141805afc23f25c08d4a2eb6d4b99f817c128
2019-04-01 14:39:13 -07:00

96 lines
2.6 KiB
C++

#ifndef CAFFE2_OPERATORS_PREPEND_DIM_OP_H_
#define CAFFE2_OPERATORS_PREPEND_DIM_OP_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
namespace caffe2 {
template <class Context>
class PrependDimOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit PrependDimOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
dim_size_(this->template GetSingleArgument<int64_t>("dim_size", 0)) {
CAFFE_ENFORCE_GT(
dim_size_, 0, "Argument dim_size must be greater than zero.");
}
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE(input.dim() > 0, "Input must be at least 1D.");
CAFFE_ENFORCE(
input.size(0) % dim_size_ == 0,
"First dimension must be multiple of prepend_dim. Current first dimension: ",
input.size(0));
vector<int64_t> actual_new_shape(input.dim() + 1);
actual_new_shape[0] = dim_size_;
actual_new_shape[1] = input.size(0) / dim_size_;
for (int i = 1; i < input.sizes().size(); ++i) {
actual_new_shape[i + 1] = input.size(i);
}
output->Resize(actual_new_shape);
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),
input.raw_data(),
output->raw_mutable_data(input.dtype()));
}
return true;
}
private:
int64_t dim_size_;
};
template <class Context>
class MergeDimOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MergeDimOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
auto& input = Input(0);
auto* output = Output(0);
CAFFE_ENFORCE(input.dim() > 1, "Input must be at least 2D.");
vector<int64_t> actual_new_shape(input.dim() - 1);
actual_new_shape[0] = input.size(0) * input.size(1);
for (int i = 1; i < input.sizes().size() - 1; ++i) {
actual_new_shape[i] = input.size(i + 1);
}
output->Resize(actual_new_shape);
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.dtype(),
input.numel(),
input.raw_data(),
output->raw_mutable_data(input.dtype()));
}
return true;
}
private:
int64_t dim_size_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_PREPEND_DIM_OP_H_