pytorch/caffe2/operators/normalize_l1_op.h
Jerry Zhang 43c0b50c2e Tensor construction codemod(ResizeLike) - 5/7 (#15084)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15084

Codemod generated with clangr shard mode, 25 files per diff,
motivation: https://github.com/pytorch/pytorch/pull/12407

Reviewed By: ezyang

Differential Revision: D13419711

fbshipit-source-id: dd2b740c3f13d8087085bafc5571aaf908d1af42
2018-12-13 12:42:52 -08:00

40 lines
1.0 KiB
C++

#ifndef CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_
#define CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class NormalizeL1Op final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(NormalizeL1Op)
bool RunOnDevice() override {
const auto& x = Input(0);
const auto* xData = x.template data<T>();
auto* y = Output(0, x.sizes(), at::dtype<T>());
auto* yData = y->template mutable_data<T>();
const auto canonical_axis = x.canonical_axis_index(
this->template GetSingleArgument<int>("axis", -1));
const int m = x.dim32(canonical_axis);
const int n = x.numel() / m;
const int sf = x.size_from_dim(canonical_axis + 1);
DoNormalize(xData, yData, m, n, sf);
return true;
}
private:
void
DoNormalize(const T* xData, T* yData, const int m, const int n, const int sf);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_