pytorch/caffe2/operators/normalize_l1_op.cc
Orion Reblitz-Richardson 7f33ec55b2 Fix Eigen issue on OS X with CUDA and nvcc compile (#9350)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9350

Re-apply #9270

Breaking this out of #8338

This takes care of the Eigen failure we saw on Mac CUDA builds when BUILD_CAFFE2 and BUILD_ATEN were removed. Fix is to isolate Eigen from headers included by cu files and processed by nvcc. This was worked on with smessmer.

Reviewed By: mingzhe09088

Differential Revision: D8794431

fbshipit-source-id: de656334af46c697802073f8e8d9a6aeb9ca65a7
2018-07-11 14:00:05 -07:00

42 lines
1.1 KiB
C++

#include "caffe2/operators/normalize_l1_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <typename T, class Context>
void NormalizeL1Op<T, Context>::DoNormalize(
const T* xData,
T* yData,
const int m,
const int n,
const int sf) {
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
using StridedVec =
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
using ConstStridedVec =
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
for (int i = 0; i < n; ++i) {
auto base = (i / sf) * sf * m + (i % sf);
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
auto norm = xVec.template lpNorm<1>();
if (norm != 0) {
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
yVec = xVec / norm;
}
}
};
REGISTER_CPU_OPERATOR(NormalizeL1, NormalizeL1Op<float, CPUContext>);
OPERATOR_SCHEMA(NormalizeL1)
.NumInputs(1)
.NumOutputs(1)
.Arg("axis", "axis to normalize")
.SetDoc(R"DOC(
Given a matrix, apply L1-normalization along the specified axis.
)DOC");
} // namespace caffe2