mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9350 Re-apply #9270 Breaking this out of #8338 This takes care of the Eigen failure we saw on Mac CUDA builds when BUILD_CAFFE2 and BUILD_ATEN were removed. Fix is to isolate Eigen from headers included by cu files and processed by nvcc. This was worked on with smessmer. Reviewed By: mingzhe09088 Differential Revision: D8794431 fbshipit-source-id: de656334af46c697802073f8e8d9a6aeb9ca65a7
42 lines
1.1 KiB
C++
42 lines
1.1 KiB
C++
#include "caffe2/operators/normalize_l1_op.h"
|
|
|
|
#include "caffe2/core/tensor.h"
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
void NormalizeL1Op<T, Context>::DoNormalize(
|
|
const T* xData,
|
|
T* yData,
|
|
const int m,
|
|
const int n,
|
|
const int sf) {
|
|
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
|
|
using StridedVec =
|
|
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
|
using ConstStridedVec =
|
|
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
auto base = (i / sf) * sf * m + (i % sf);
|
|
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
|
|
auto norm = xVec.template lpNorm<1>();
|
|
if (norm != 0) {
|
|
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
|
|
yVec = xVec / norm;
|
|
}
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OPERATOR(NormalizeL1, NormalizeL1Op<float, CPUContext>);
|
|
OPERATOR_SCHEMA(NormalizeL1)
|
|
.NumInputs(1)
|
|
.NumOutputs(1)
|
|
.Arg("axis", "axis to normalize")
|
|
.SetDoc(R"DOC(
|
|
Given a matrix, apply L1-normalization along the specified axis.
|
|
)DOC");
|
|
|
|
} // namespace caffe2
|