mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15084 Codemod generated with clangr shard mode, 25 files per diff, motivation: https://github.com/pytorch/pytorch/pull/12407 Reviewed By: ezyang Differential Revision: D13419711 fbshipit-source-id: dd2b740c3f13d8087085bafc5571aaf908d1af42
207 lines
7.0 KiB
C++
207 lines
7.0 KiB
C++
#include "caffe2/operators/instance_norm_op.h"
|
|
#include "caffe2/utils/eigen_utils.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
// Here lives two separate implementations of the forward and backward passes of
|
|
// instance normalization, one for NHWC order and the other for NCHW order.
|
|
// Two implementations allow us to make use of Eigen vectorized operations
|
|
// without an expensive tensor transpose operation.
|
|
|
|
template <typename T, typename Context>
|
|
bool InstanceNormOp<T, Context>::RunOnDeviceWithOrderNHWC() {
|
|
const auto& X = Input(INPUT);
|
|
|
|
CAFFE_ENFORCE(
|
|
!IsInputOutputAlias(INPUT, OUTPUT),
|
|
"Can't run InstanceNorm NHWC in-place");
|
|
auto* mean = OutputSize() > 1 ? Output(MEAN) : &mean_;
|
|
auto* inv_stdev = OutputSize() > 1 ? Output(INV_STDEV) : &inv_stdev_;
|
|
const int N = X.dim32(0);
|
|
const int H = X.dim32(1);
|
|
const int W = X.dim32(2);
|
|
const int C = X.dim32(3);
|
|
const size_t offset = H * W * C;
|
|
|
|
CAFFE_ENFORCE_EQ(Input(SCALE).numel(), C);
|
|
CAFFE_ENFORCE_EQ(Input(BIAS).numel(), C);
|
|
|
|
auto* Y = Output(OUTPUT, X.sizes(), at::dtype<T>());
|
|
mean->Resize(N, C);
|
|
inv_stdev->Resize(N, C);
|
|
ConstEigenVectorArrayMap<T> scale(Input(SCALE).template data<T>(), C);
|
|
ConstEigenVectorArrayMap<T> bias(Input(BIAS).template data<T>(), C);
|
|
for (int n = 0; n < N; ++n) {
|
|
ConstEigenArrayMap<T> Xmat(X.template data<T>() + offset * n, C, H * W);
|
|
EigenArrayMap<T> Ymat(Y->template mutable_data<T>() + offset * n, C, H * W);
|
|
EigenVectorArrayMap<T> mean_arr(
|
|
mean->template mutable_data<T>() + n * C, C);
|
|
EigenVectorArrayMap<T> inv_stdev_arr(
|
|
inv_stdev->template mutable_data<T>() + n * C, C);
|
|
|
|
// The following effectively does the row wise mean computation:
|
|
// mean_arr = Xmat.rowwise().mean();
|
|
// but manually vectorizes over columns.
|
|
mean_arr = Xmat.col(0);
|
|
for (int i = 1; i < H * W; ++i) {
|
|
mean_arr += Xmat.col(i);
|
|
}
|
|
mean_arr *= 1. / (H * W);
|
|
Ymat = Xmat.colwise() - mean_arr;
|
|
// The following effectively does row wise squared norm computation,
|
|
// but manually vectorizes over columns similar to the mean case.
|
|
inv_stdev_arr = Ymat.col(0) * Ymat.col(0);
|
|
for (int i = 1; i < H * W; ++i) {
|
|
inv_stdev_arr += Ymat.col(i) * Ymat.col(i);
|
|
}
|
|
inv_stdev_arr = (inv_stdev_arr / (H * W) + epsilon_).sqrt().inverse();
|
|
Ymat = (Ymat.colwise() * (inv_stdev_arr * scale)).colwise() + bias;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T, typename Context>
|
|
bool InstanceNormOp<T, Context>::RunOnDeviceWithOrderNCHW() {
|
|
const auto& X = Input(INPUT);
|
|
const auto& scale = Input(SCALE);
|
|
const auto& bias = Input(BIAS);
|
|
|
|
auto* mean = OutputSize() > 1 ? Output(MEAN) : &mean_;
|
|
auto* inv_stdev = OutputSize() > 1 ? Output(INV_STDEV) : &inv_stdev_;
|
|
const int N = X.dim32(0);
|
|
const int C = X.dim32(1);
|
|
const int H = X.dim32(2);
|
|
const int W = X.dim32(3);
|
|
|
|
CAFFE_ENFORCE_EQ(scale.numel(), C);
|
|
CAFFE_ENFORCE_EQ(bias.numel(), C);
|
|
|
|
auto* Y = Output(OUTPUT, X.sizes(), at::dtype<T>());
|
|
mean->Resize(N, C);
|
|
inv_stdev->Resize(N, C);
|
|
|
|
const auto* Xdata = X.template data<T>();
|
|
auto* Ydata = Y->template mutable_data<T>();
|
|
const auto* scale_data = scale.template data<T>();
|
|
const auto* bias_data = bias.template data<T>();
|
|
auto* mean_data = mean->template mutable_data<T>();
|
|
auto* inv_stdev_data = inv_stdev->template mutable_data<T>();
|
|
|
|
// TODO: benchmark parallelization strategies.
|
|
for (auto i = 0; i < N * C; ++i) {
|
|
ConstEigenVectorArrayMap<T> Xi(Xdata + H * W * i, H * W);
|
|
const T Xi_mean = Xi.mean();
|
|
const T squared_norm = (Xi - Xi_mean).matrix().squaredNorm();
|
|
const T inv_stdev = 1.0 / std::sqrt(squared_norm / (H * W) + epsilon_);
|
|
mean_data[i] = Xi_mean;
|
|
inv_stdev_data[i] = inv_stdev;
|
|
EigenVectorArrayMap<T> Yi(Ydata + H * W * i, H * W);
|
|
const T channel_scale = inv_stdev * scale_data[i % C];
|
|
const T channel_shift = bias_data[i % C] - Xi_mean * channel_scale;
|
|
Yi = Xi * channel_scale + channel_shift;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
REGISTER_CPU_OPERATOR(InstanceNorm, InstanceNormOp<float, CPUContext>);
|
|
|
|
OPERATOR_SCHEMA(InstanceNorm)
|
|
.NumInputs(3)
|
|
.NumOutputs(1, 3)
|
|
.AllowInplace({{0,0}})
|
|
.SetDoc(R"DOC(
|
|
The *InstanceNorm* op applies Instance Normalization over a 4D input as described in [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
|
|
|
|
$$output = \frac{input-\mu_{input}}{\sqrt{\sigma_{input}^2} + \epsilon}*scale + bias$$
|
|
|
|
Notice, two of the outputs are optional so there are three output cases for this op. Case 1: output; Case 2: output, saved_mean; Case 3: output, saved_mean, saved_inv_stdev.
|
|
|
|
Github Links:
|
|
|
|
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.h
|
|
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.cc
|
|
|
|
|
|
<details>
|
|
|
|
<summary> <b>Example</b> </summary>
|
|
|
|
**Code**
|
|
|
|
```
|
|
|
|
workspace.ResetWorkspace()
|
|
|
|
op = core.CreateOperator(
|
|
"InstanceNorm",
|
|
["input", "scale", "bias"],
|
|
["output"],
|
|
epsilon=1e-5,
|
|
)
|
|
|
|
workspace.FeedBlob("input", np.random.randn(2, 1, 3, 3).astype(np.float32))
|
|
print("input:\n", workspace.FetchBlob("input"), "\n")
|
|
|
|
workspace.FeedBlob("scale", np.array([1.5]).astype(np.float32))
|
|
print("scale: ", workspace.FetchBlob("scale"))
|
|
|
|
workspace.FeedBlob("bias", np.array([1.]).astype(np.float32))
|
|
print("bias: ", workspace.FetchBlob("bias"))
|
|
|
|
workspace.RunOperatorOnce(op)
|
|
print("output:\n", workspace.FetchBlob("output"))
|
|
|
|
```
|
|
|
|
**Result**
|
|
|
|
```
|
|
|
|
input:
|
|
[[[[ 0.97856593 -1.1832817 -0.2540021 ]
|
|
[-1.3315694 -0.7485018 0.3787225 ]
|
|
[-0.6826597 -1.4637762 0.57116514]]]
|
|
|
|
|
|
[[[-0.44948956 0.85544354 -0.9315333 ]
|
|
[-0.37202677 -0.22266895 -0.27194235]
|
|
[ 0.4948163 -0.7296504 1.3393803 ]]]]
|
|
|
|
scale: [1.5]
|
|
bias: [1.]
|
|
output:
|
|
[[[[ 3.5017493 -0.3791256 1.2890853 ]
|
|
[-0.6453266 0.40137637 2.4249308 ]
|
|
[ 0.5195738 -0.8826599 2.7703972 ]]]
|
|
|
|
|
|
[[[ 0.12639964 2.856744 -0.8821926 ]
|
|
[ 0.28847694 0.60098207 0.49788612]
|
|
[ 2.1021945 -0.45978796 3.869297 ]]]]
|
|
|
|
```
|
|
|
|
</details>
|
|
|
|
)DOC")
|
|
.Arg("epsilon", "*(type: float; default: 1e-5)* The epsilon value to use to avoid division by zero.")
|
|
.Arg("order", "*(type: string; default: \"NCHW\")* Specifies the order of the input data blob, where $N$ is batch size, $C$ is number of channels, $H$ is spatial height, and $W$ is spatial width. The only other valid option is \"NHWC\".")
|
|
.Input(0, "input", "The input 4-dimensional NCHW tensor to be operated on.")
|
|
.Input(1, "scale", "The input 1-dimensional scale tensor of size *C*.")
|
|
.Input(2, "bias", "The input 1-dimensional bias tensor of size *C*.")
|
|
.Output(
|
|
0,
|
|
"output",
|
|
"The output 4-dimensional tensor of the same shape as input.")
|
|
.Output(
|
|
1,
|
|
"saved_mean",
|
|
"(Optional) Saved mean used during training to speed up gradient computation. Should not be used for testing.")
|
|
.Output(
|
|
2,
|
|
"saved_inv_stdev",
|
|
"(Optional) Saved inverse stdev used during training to speed up gradient computation. Should not be used for testing.");
|
|
|
|
} // namespace caffe2
|