pytorch/caffe2/operators/half_float_ops_test.cc
Hector Yuen 5bf9e41938 move half<->float conversions to oss operators (#17548)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17548

expose half float operators to OSS

common/math/Float16.h is the original implementation
this is substituted by caffe2/c10/util/Half.h

from the comments seems like the both implementations don't handle denormals

Reviewed By: jspark1105

Differential Revision: D14244200

fbshipit-source-id: f90ba28c5bf6a2b451b429cc4925b8cc376ac651
2019-03-07 13:00:13 -08:00

107 lines
3.0 KiB
C++

#include <map>
#include "caffe2/core/flags.h"
#include "caffe2/core/logging.h"
#include "caffe2/operators/half_float_ops.h"
#include "caffe2/utils/conversions.h"
#include <gtest/gtest.h>
C10_DECLARE_string(caffe_test_root);
namespace caffe2 {
TEST(Float16, SimpleTest) {
Workspace ws;
vector<float> data = {0.1f, 0.23f, 1.6f, 8.2f, -13.9f};
// loading input data
Blob* dataBlob = ws.CreateBlob("data");
auto tensor = BlobGetMutableTensor(dataBlob, CPU);
tensor->Resize(data.size());
for (auto i = 0; i < tensor->numel(); ++i) {
tensor->mutable_data<float>()[i] = data[i];
}
// encoding fp32 -> fp16
OperatorDef def;
def.set_name("test");
def.set_type("FloatToHalf");
def.add_input("data");
def.add_output("data16");
unique_ptr<OperatorBase> op(CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
// run some sanity checks
Blob* outputBlob = ws.GetBlob("data16");
EXPECT_NE(nullptr, outputBlob);
EXPECT_TRUE(outputBlob->IsType<Tensor>());
const TensorCPU& outputTensor = outputBlob->Get<Tensor>();
EXPECT_EQ(outputTensor.numel(), 5);
EXPECT_NO_THROW(outputTensor.data<at::Half>());
// decode fp16 -> fp32
OperatorDef def2;
def2.set_name("test");
def2.set_type("HalfToFloat");
def2.add_input("data16");
def2.add_output("result");
unique_ptr<OperatorBase> op2(CreateOperator(def2, &ws));
EXPECT_NE(nullptr, op2.get());
EXPECT_TRUE(op2->Run());
// validate result
Blob* resultBlob = ws.GetBlob("result");
EXPECT_NE(nullptr, resultBlob);
EXPECT_TRUE(resultBlob->IsType<Tensor>());
const TensorCPU& resultTensor = resultBlob->Get<Tensor>();
EXPECT_EQ(resultTensor.numel(), 5);
for (auto i = 0; i < data.size(); ++i) {
EXPECT_NEAR(resultTensor.data<float>()[i], data[i], 0.01);
}
}
TEST(Float16, UniformDistributionTest) {
Workspace ws;
OperatorDef def;
def.set_name("test");
def.set_type("Float16UniformFill");
int64_t size = 5000000L;
std::vector<int64_t> shape = {size, 32};
long tot_size = shape[0];
for (int i = 1; i < shape.size(); i++) {
tot_size *= shape[i];
}
caffe2::AddArgument<std::vector<int64_t>>("shape", shape, &def);
caffe2::AddArgument<float>("min", -20.0, &def);
caffe2::AddArgument<float>("max", 20.0, &def);
def.add_output("result");
unique_ptr<OperatorBase> op(CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
Blob* resultBlob = ws.GetBlob("result");
const TensorCPU& resultTensor = resultBlob->Get<Tensor>();
EXPECT_EQ(resultTensor.numel(), tot_size);
double mean = 0.0, var = 0.0;
const at::Half* data = resultTensor.data<at::Half>();
for (auto i = 0; i < resultTensor.numel(); i++) {
float x = caffe2::convert::Get<float, at::Half>(data[i]);
mean += x;
var += x * x;
}
mean /= tot_size;
var /= tot_size;
LOG(INFO) << "m " << mean << " " << var;
// The uniform distribution of [-20,20] should have a mean of 0
// and a variance of 40^2/12
EXPECT_TRUE(fabs(mean) < 0.1);
EXPECT_TRUE(fabs(var - 133.33) / 133.33 < 0.1);
}
} // namespace caffe2