pytorch/caffe2/operators/copy_op.cc
Eli Amesefe 12efef166a Split out copy_op from utility_ops (#11470)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11470

In order to reduce build sizes, we are identifying files that can be split up into smaller units, allowing us to only include the ops we need.

Reviewed By: orionr, ajtulloch

Differential Revision: D9725819

fbshipit-source-id: def1074a33dffe99bd6a7e6e48aa9e5be3d04a6a
2018-09-12 16:25:48 -07:00

199 lines
6.3 KiB
C++

#include "caffe2/operators/copy_op.h"
namespace caffe2 {
// From CPU, copy it to whatever the current context
REGISTER_CPU_OPERATOR(
CopyFromCPUInput,
CopyOp<CPUContext, CPUContext, CPUContext>);
REGISTER_CPU_OPERATOR(
CopyOnDeviceLike,
CopyOnDeviceLikeOp<CPUContext, CPUContext, CPUContext>);
REGISTER_CPU_OPERATOR(Copy, CopyOp<CPUContext, CPUContext, CPUContext>);
OPERATOR_SCHEMA(Copy)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.SetDoc(R"DOC(
Copy input tensor into output, potentially across devices.
Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/copy_op.cc
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/copy_op.h
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Copy",
["input"],
["output"]
)
workspace.FeedBlob("input", np.random.rand(3,3))
print("input:", workspace.FetchBlob("input"))
workspace.RunOperatorOnce(op)
print("output:", workspace.FetchBlob("output"))
```
**Result**
```
input:
[[0.16826761 0.68168217 0.55196001]
[0.19735483 0.34837823 0.69015595]
[0.09448514 0.57390828 0.37097193]]
output:
[[0.16826761 0.68168217 0.55196001]
[0.19735483 0.34837823 0.69015595]
[0.09448514 0.57390828 0.37097193]]
```
</details>
)DOC")
.Input(0, "input", "(*Tensor*): input tensor to copy")
.Output(0, "output", "(*Tensor*): copy of input tensor");
OPERATOR_SCHEMA(CopyGPUToCPU)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.DeviceInferenceFunction([](const OperatorDef& def) {
CAFFE_ENFORCE(
def.has_device_option(),
"CopyGPUToCPU op should have cuda device option.");
auto& cuda_option = def.device_option();
auto cpu_option = DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), cuda_option);
vector<DeviceOption> out_dev(def.output_size(), cpu_option);
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Copy tensor for GPU to CPU context. Must be run under GPU device option.
)DOC")
.Input(0, "input", "The input tensor.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(CopyCPUToGPU)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.DeviceInferenceFunction([](const OperatorDef& def) {
CAFFE_ENFORCE(
def.has_device_option(),
"CopyCPUToGPU op should have cuda device option.");
auto& cuda_option = def.device_option();
auto cpu_option = DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), cpu_option);
vector<DeviceOption> out_dev(def.output_size(), cuda_option);
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Copy tensor for CPU to GPU context. Must be run under GPU device option.
)DOC")
.Input(0, "input", "The input tensor.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
OPERATOR_SCHEMA(CopyFromCPUInput)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.DeviceInferenceFunction([](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
auto cpu_option = DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), cpu_option);
vector<DeviceOption> out_dev(def.output_size(), op_device);
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Take a CPU input tensor and copy it to an output in the current
Context (GPU or CPU). This may involves cross-device MemCpy.
)DOC")
.Input(0, "input", "The input CPU tensor.")
.Output(0, "output", "either a TensorCUDA or a TensorCPU");
OPERATOR_SCHEMA(CopyOnDeviceLike)
.NumInputs(2)
.NumOutputs(1)
.SetDoc("Copy input tensor into output to the specific device.")
.Input(0, "input", "The input tensor.")
.Input(1, "dst", "Tensor, on which device the copy will be performed.")
.Output(0, "output", "Tensor that will contain a copy of the input.");
struct GetCopyGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"CopyOnDeviceLike",
"",
vector<string>{GO(0), I(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Copy, GetCopyGradient);
struct GetGPUToCPUGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
if (g_output_[0].IsDense()) {
return SingleGradientDef(
"CopyCPUToGPU", "", vector<string>{GO(0)}, vector<string>{GI(0)});
} else {
return vector<OperatorDef>{CreateOperatorDef(
"CopyCPUToGPU",
"",
std::vector<string>{GO_I(0)},
std::vector<string>{GI_I(0)}),
CreateOperatorDef(
"CopyCPUToGPU",
"",
std::vector<string>{GO_V(0)},
std::vector<string>{GI_V(0)})};
}
}
};
REGISTER_GRADIENT(CopyGPUToCPU, GetGPUToCPUGradient);
struct GetCPUToGPUGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
if (g_output_[0].IsDense()) {
return SingleGradientDef(
"CopyGPUToCPU", "", vector<string>{GO(0)}, vector<string>{GI(0)});
} else {
return vector<OperatorDef>{CreateOperatorDef(
"CopyGPUToCPU",
"",
std::vector<string>{GO_I(0)},
std::vector<string>{GI_I(0)}),
CreateOperatorDef(
"CopyGPUToCPU",
"",
std::vector<string>{GO_V(0)},
std::vector<string>{GI_V(0)})};
}
}
};
REGISTER_GRADIENT(CopyCPUToGPU, GetCPUToGPUGradient);
} // namespace caffe2