pytorch/caffe2/operators/conv_pool_op_base.h
Summer Deng 84b264b17d Add NHWC order support in the cost inference function of 3d conv (#19170)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19170

As title
The quantized resnext3d model in production got the following failures without the fix:

```
 Caffe2 operator Int8ConvRelu logging error: [enforce fail at conv_pool_op_base.h:463] order == StorageOrder::NCHW. 1 vs 2. Conv3D only supports NCHW on the production quantized model
```

Reviewed By: jspark1105

Differential Revision: D14894276

fbshipit-source-id: ef97772277f322ed45215e382c3b4a3702e47e59
2019-04-15 16:47:22 -07:00

900 lines
31 KiB
C++

#ifndef CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_
#define CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_
#include <algorithm>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/proto/caffe2_legacy.pb.h"
#include "caffe2/utils/math.h"
// This macro is here just to allow us to experiment with padding values that
// determines, when we have an odd number of pads, which side gets the one
// additional pad value, the head side, or the tail side. Setting it to false
// will enable the TensorFlow behavior, and setting it to true will enable
// a behavior more consistent with Caffe and CuDNN.
// This only affects the case when you set legacy pad to VALID or SAME. The
// behavior inherits from the early designs of Google's CNN implementation,
// where padding values are implicitly calculated instead of explicitly
// specified. This is still the case with TensorFlow. Many frameworks have
// followed a slightly different approach of explicitly giving padding values,
// in which case the value of this constant value does not matter.
const bool CAFFE2_PAD_HEAD_MORE = false;
namespace caffe2 {
template <class Context>
class ConvPoolOpBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit ConvPoolOpBase(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
legacy_pad_(
static_cast<LegacyPadding>(this->template GetSingleArgument<int>(
"legacy_pad",
LegacyPadding::NOTSET))),
global_pooling_(
this->template GetSingleArgument<int>("global_pooling", 0)),
kernel_(this->template GetRepeatedArgument<int>("kernels")),
dilation_(this->template GetRepeatedArgument<int>("dilations")),
stride_(this->template GetRepeatedArgument<int>("strides")),
pads_(this->template GetRepeatedArgument<int>("pads")),
float16_compute_(
this->template GetSingleArgument<bool>("float16_compute", false)),
group_(this->template GetSingleArgument<int>("group", 1)),
order_(StringToStorageOrder(
this->template GetSingleArgument<string>("order", "NCHW"))),
shared_buffer_(
this->template GetSingleArgument<int>("shared_buffer", 0)),
ws_(ws) {
// For the padding, they should either be the legacy padding strategy
// (VALID or SAME), or an explicit, non-negative value.
if (legacy_pad_ == LegacyPadding::VALID ||
legacy_pad_ == LegacyPadding::SAME) {
CAFFE_ENFORCE(
!OperatorBase::HasArgument("pads"),
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
}
// Get old arguments values.
if (OperatorBase::HasArgument("kernel")) {
kernel_.resize(2, this->template GetSingleArgument<int>("kernel", 0));
} else if (
OperatorBase::HasArgument("kernel_h") &&
OperatorBase::HasArgument("kernel_w")) {
kernel_.push_back(this->template GetSingleArgument<int>("kernel_h", 0));
kernel_.push_back(this->template GetSingleArgument<int>("kernel_w", 0));
}
if (OperatorBase::HasArgument("stride")) {
stride_.resize(2, this->template GetSingleArgument<int>("stride", 0));
} else if (
OperatorBase::HasArgument("stride_h") &&
OperatorBase::HasArgument("stride_w")) {
stride_.push_back(this->template GetSingleArgument<int>("stride_h", 0));
stride_.push_back(this->template GetSingleArgument<int>("stride_w", 0));
}
if (OperatorBase::HasArgument("dilation")) {
dilation_.resize(2, this->template GetSingleArgument<int>("dilation", 0));
} else if (
OperatorBase::HasArgument("dilation_h") &&
OperatorBase::HasArgument("dilation_w")) {
dilation_.push_back(
this->template GetSingleArgument<int>("dilation_h", 0));
dilation_.push_back(
this->template GetSingleArgument<int>("dilation_w", 0));
}
if (OperatorBase::HasArgument("pad")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.resize(4, this->template GetSingleArgument<int>("pad", 0));
} else if (
OperatorBase::HasArgument("pad_t") &&
OperatorBase::HasArgument("pad_l") &&
OperatorBase::HasArgument("pad_b") &&
OperatorBase::HasArgument("pad_r")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.push_back(this->template GetSingleArgument<int>("pad_t", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_l", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_b", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_r", 0));
}
// Fill default values.
if (kernel_.size() == 0) {
kernel_.assign({0, 0});
}
if (stride_.size() == 0) {
stride_.resize(kernel_.size(), 1);
}
if (pads_.size() == 0) {
pads_.resize(kernel_.size() * 2, 0);
}
if (dilation_.size() == 0) {
dilation_.resize(kernel_.size(), 1);
}
CAFFE_ENFORCE_EQ(stride_.size(), kernel_.size());
CAFFE_ENFORCE_EQ(dilation_.size(), kernel_.size());
if (legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME) {
CAFFE_ENFORCE_EQ(pads_.size(), 2 * kernel_.size());
}
if (global_pooling_) {
for (size_t dim = 0; dim < kernel_.size(); ++dim) {
CAFFE_ENFORCE(
pads_[2 * dim] == 0 && pads_[2 * dim + 1] == 0 &&
dilation_[dim] == 1 && stride_[dim] == 1,
"If global_pooling is set pad, dilation and stride shouldn't be set.");
}
}
// Check kernel only if we are doing conv or pooling. The reason is that a
// few other ops, like PadImage, are also using this base class. We really
// need to clean this up.
if (operator_def.name().find("Conv") == 0 ||
operator_def.name().find("Pool") != std::string::npos) {
for (size_t dim = 0; dim < kernel_.size(); ++dim) {
CAFFE_ENFORCE_GE(pads_[dim], 0);
CAFFE_ENFORCE_GE(pads_[kernel_.size() + dim], 0);
CAFFE_ENFORCE(
kernel_[dim],
"If you are doing convolution or pooling, you will need to set "
"explicitly the kernel size.");
}
}
for (size_t dim = 0; dim < kernel_.size(); ++dim) {
CAFFE_ENFORCE_GE(kernel_[dim], 0);
CAFFE_ENFORCE_GE(dilation_[dim], 0);
CAFFE_ENFORCE_GE(stride_[dim], 0);
}
}
// Returns the input image dimensions for the current storage order type.
vector<int> GetDims(const Tensor& input) {
vector<int> dims;
switch (order_) {
case StorageOrder::NCHW:
dims.assign(input.sizes().begin() + 2, input.sizes().end());
break;
case StorageOrder::NHWC:
dims.assign(input.sizes().begin() + 1, input.sizes().end() - 1);
break;
default:
CAFFE_THROW("Unknown storage order : ", order_);
}
return dims;
}
// Returns the size of the input image for the current storage type.
int GetDimsSize(const Tensor& input) {
int size = 0;
switch (order_) {
case StorageOrder::NCHW:
size = std::accumulate(
input.sizes().begin() + 2,
input.sizes().end(),
1,
std::multiplies<int>());
break;
case StorageOrder::NHWC:
size = std::accumulate(
input.sizes().begin() + 1,
input.sizes().end() - 1,
1,
std::multiplies<int>());
break;
default:
CAFFE_THROW("Unknown storage order : ", order_);
}
return size;
}
// Gets the output size. The output channel is manually provided since
// it may not be identical to the input channels.
// This function can be used in the forward functions to obtain the output
// sizes.
// Note(jiayq): the templatization of this function is mainly to help
// implementations that do not use first-class Tensor objects, such as the
// MKL operator. One can still call this function with dummy
// Tensor objects in order to obtain the sizes.
std::vector<int64_t> GetOutputSize(const Tensor& input, int output_channel) {
CAFFE_ENFORCE_GE(input.dim(), 2);
const int inner_size = input.size_from_dim(1);
CAFFE_ENFORCE_GT(inner_size, 0);
std::vector<int64_t> output_dims;
InferOutputSize64(
input.sizes(),
output_channel,
order_,
global_pooling_,
legacy_pad_,
dilation_,
stride_,
&kernel_,
&pads_,
&output_dims);
return output_dims;
}
void SetOutputSize(const Tensor& input, Tensor* output, int output_channel) {
const int inner_size = input.size_from_dim(1);
CAFFE_ENFORCE_GT(inner_size, 0);
std::vector<int> output_dims;
InferOutputSize(
input.sizes(),
output_channel,
order_,
global_pooling_,
legacy_pad_,
dilation_,
stride_,
&kernel_,
&pads_,
&output_dims);
output->Resize(output_dims);
}
// Helper function that is also called from OperatorSchema. Modified
// kernel parameters and output output_dims and channel_first.
static void InferOutputSize(
const at::IntArrayRef& input_dims,
const int output_channel,
const StorageOrder order,
const bool global_pooling,
const LegacyPadding legacy_pad,
const std::vector<int>& dilation,
const std::vector<int>& stride,
std::vector<int>* kernel,
std::vector<int>* pads,
std::vector<int>* output_dims) {
CAFFE_ENFORCE_NE(order, StorageOrder::UNKNOWN);
const int ndim = input_dims.size() - 2;
output_dims->resize(ndim + 2);
output_dims->front() = input_dims.front();
if (order == StorageOrder::NCHW) {
output_dims->at(1) = output_channel;
} else {
output_dims->back() = output_channel;
}
const int offset = order == StorageOrder::NCHW ? 2 : 1;
if (global_pooling) {
std::copy_n(input_dims.cbegin() + offset, ndim, kernel->begin());
std::fill_n(output_dims->begin() + offset, ndim, 1LL);
} else {
for (int i = 0; i < ndim; ++i) {
ComputeSizeAndPad(
input_dims[i + offset],
stride[i],
kernel->at(i),
dilation[i],
legacy_pad,
&pads->at(i),
&pads->at(i + ndim),
&output_dims->at(i + offset));
}
}
}
static void InferOutputSize64(
const at::IntArrayRef& input_dims,
const int output_channel,
const StorageOrder order,
const bool global_pooling,
const LegacyPadding legacy_pad,
const std::vector<int>& dilation,
const std::vector<int>& stride,
std::vector<int>* kernel,
std::vector<int>* pads,
std::vector<int64_t>* output_dims) {
CAFFE_ENFORCE_NE(order, StorageOrder::UNKNOWN);
const int ndim = input_dims.size() - 2;
output_dims->resize(ndim + 2);
output_dims->front() = input_dims.front();
if (order == StorageOrder::NCHW) {
output_dims->at(1) = output_channel;
} else {
output_dims->back() = output_channel;
}
const int offset = order == StorageOrder::NCHW ? 2 : 1;
if (global_pooling) {
std::copy_n(input_dims.cbegin() + offset, ndim, kernel->begin());
std::fill_n(output_dims->begin() + offset, ndim, 1LL);
} else {
for (int i = 0; i < ndim; ++i) {
ComputeSizeAndPad64(
input_dims[i + offset],
stride[i],
kernel->at(i),
dilation[i],
legacy_pad,
&pads->at(i),
&pads->at(i + ndim),
&output_dims->at(i + offset));
}
}
}
// ComputePads could be used in backward functions to figure out the padding
// values for the given input.
void ComputePads(const vector<int>& dims) {
if (global_pooling_) {
kernel_ = dims;
} else if (legacy_pad_ != LegacyPadding::NOTSET) {
int output_unused;
for (int dim = 0; dim < dims.size(); ++dim) {
ComputeSizeAndPad(
dims[dim],
stride_[dim],
kernel_[dim],
dilation_[dim],
legacy_pad_,
&pads_[dim],
&pads_[dims.size() + dim],
&output_unused);
}
}
}
bool HasPad() const {
if (kernel_.size() == 2) {
return pad_t() > 0 || pad_b() > 0 || pad_l() > 0 || pad_r() > 0;
}
return std::any_of(
pads_.cbegin(), pads_.cend(), [](const int x) { return x > 0; });
}
bool HasStride() const {
if (kernel_.size() == 2) {
return stride_h() > 1 || stride_w() > 1;
}
return std::any_of(
stride_.cbegin(), stride_.cend(), [](const int x) { return x > 1; });
}
void SetDeviceTensor(const std::vector<int>& data, Tensor* tensor) {
bool reset_tensor_device_ = false;
if (tensor->numel() != data.size()) {
tensor->Resize(data.size());
reset_tensor_device_ = true;
} else {
const int* tensor_data = tensor->template data<int>();
for (int d_i = 0; d_i < data.size(); ++d_i) {
if (tensor_data[d_i] != data[d_i]) {
reset_tensor_device_ = true;
break;
}
}
}
if (reset_tensor_device_) {
context_.template Copy<int, CPUContext, Context>(
data.size(), data.data(), tensor->template mutable_data<int>());
}
}
template <typename T>
void SetBiasMultiplier(const int size, Tensor* bias_multiplier_) {
if (bias_multiplier_->numel() != size) {
// If the helper bias multiplier is not image size, reshape and fill it
// with one.
bias_multiplier_->Resize(std::vector<int64_t>{size});
math::Set<T, Context>(
size,
static_cast<T>(1),
bias_multiplier_->template mutable_data<T>(),
&context_);
}
}
bool RunOnDevice() override {
if (!global_pooling_) {
for (size_t dim = 0; dim < kernel_.size(); ++dim) {
CAFFE_ENFORCE_GT(kernel_[dim], 0);
}
}
switch (order_) {
case StorageOrder::NHWC:
// VLOG(2) << "Running NHWC";
return RunOnDeviceWithOrderNHWC();
case StorageOrder::NCHW:
// VLOG(2) << "Running NCHW";
return RunOnDeviceWithOrderNCHW();
default:
CAFFE_THROW("Unknown Storage order: ", order_);
}
}
// The actual function that does the computation, if the different
// storage order leads to different implementations.
virtual bool RunOnDeviceWithOrderNHWC() {
CAFFE_NOT_IMPLEMENTED;
}
virtual bool RunOnDeviceWithOrderNCHW() {
CAFFE_NOT_IMPLEMENTED;
}
static struct OpSchema::Cost CostInferenceForConv(
const OperatorDef& def,
const vector<TensorShape>& inputs) {
CAFFE_ENFORCE_GE(inputs.size(), 2, "Conv requires at least 2 inputs");
struct OpSchema::Cost c;
const TensorShape X = inputs[0];
const TensorShape W = inputs[1];
const TensorShape Y = TensorInferenceForConv(def, inputs)[0];
ArgumentHelper helper(def);
const auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
uint64_t N;
uint64_t Y_h;
uint64_t Y_w = 1;
uint64_t Y_t = 1;
uint64_t kernel_h;
uint64_t kernel_w = 1;
uint64_t kernel_t = 1;
uint64_t in_channels;
uint64_t out_channels;
if (X.dims_size() == 0 || W.dims_size() == 0) {
return c;
}
N = X.dims(0);
if (X.dims_size() == 5) {
// 3D convolution
if (order == StorageOrder::NHWC) {
Y_t = Y.dims(1);
Y_h = Y.dims(2);
Y_w = Y.dims(3);
kernel_t = W.dims(1);
kernel_h = W.dims(2);
kernel_w = W.dims(3);
in_channels = W.dims(4);
out_channels = W.dims(0);
} else {
Y_t = Y.dims(2);
Y_h = Y.dims(3);
Y_w = Y.dims(4);
kernel_t = W.dims(2);
kernel_h = W.dims(3);
kernel_w = W.dims(4);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
} else if (X.dims_size() == 4) {
// 2D convolution
CAFFE_ENFORCE_EQ(W.dims_size(), 4, "Conv2D should have 4D filter tensor");
if (order == StorageOrder::NHWC) {
Y_h = Y.dims(1);
Y_w = Y.dims(2);
kernel_h = W.dims(1);
kernel_w = W.dims(2);
in_channels = W.dims(3);
out_channels = W.dims(0);
} else {
Y_h = Y.dims(2);
Y_w = Y.dims(3);
kernel_h = W.dims(2);
kernel_w = W.dims(3);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
} else {
// 1D convolution
CAFFE_ENFORCE_EQ(W.dims_size(), 3, "Conv1D should have 3D filter tensor");
if (order == StorageOrder::NHWC) {
Y_h = Y.dims(1);
kernel_h = W.dims(1);
in_channels = W.dims(2);
out_channels = W.dims(0);
} else {
Y_h = Y.dims(2);
kernel_h = W.dims(2);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
}
uint64_t nElemX = nElemFromDim(X);
uint64_t nElemW = nElemFromDim(W);
uint64_t nElemBias = inputs.size() > 2 ? nElemFromDim(inputs[2]) : 0;
// grouping is NOT properly handled yet
c.flops = N * Y_t * Y_h * Y_w * kernel_t * kernel_w * kernel_h *
in_channels * out_channels * 2;
c.bytes_read = (nElemX + nElemW + nElemBias) * sizeof(X.data_type());
c.bytes_written =
N * out_channels * Y_t * Y_h * Y_w * sizeof(Y.data_type());
c.params_bytes = out_channels * in_channels * kernel_t * kernel_h *
kernel_w * sizeof(W.data_type());
return c;
}
static vector<TensorShape> TensorInferenceForSchema(
const OperatorDef& def,
const vector<TensorShape>& in,
int output_channel) {
ArgumentHelper helper(def);
CAFFE_ENFORCE_GT(in.size(), 0);
CAFFE_ENFORCE_GT(in[0].dims_size(), 0);
vector<int> pads = helper.GetRepeatedArgument<int>("pads");
vector<int> kernel = helper.GetRepeatedArgument<int>("kernels");
vector<int> strides = helper.GetRepeatedArgument<int>("strides");
vector<int> dilations = helper.GetRepeatedArgument<int>("dilation");
if (helper.HasArgument("pad")) {
pads.resize(4, helper.GetSingleArgument<int>("pad", 0));
} else if (
helper.HasArgument("pad_t") && helper.HasArgument("pad_l") &&
helper.HasArgument("pad_b") && helper.HasArgument("pad_r")) {
pads.push_back(helper.GetSingleArgument<int>("pad_t", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_l", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_b", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_r", 0));
}
if (helper.HasArgument("kernel")) {
kernel.resize(2, helper.GetSingleArgument<int>("kernel", 1));
} else if (
helper.HasArgument("kernel_h") && helper.HasArgument("kernel_w")) {
kernel.push_back(helper.GetSingleArgument<int>("kernel_h", 1));
kernel.push_back(helper.GetSingleArgument<int>("kernel_w", 1));
}
if (helper.HasArgument("stride")) {
strides.resize(2, helper.GetSingleArgument<int>("stride", 1));
} else if (
helper.HasArgument("stride_h") && helper.HasArgument("stride_w")) {
strides.push_back(helper.GetSingleArgument<int>("stride_h", 1));
strides.push_back(helper.GetSingleArgument<int>("stride_w", 1));
}
if (helper.HasArgument("dilation")) {
strides.resize(2, helper.GetSingleArgument<int>("dilation", 1));
} else if (
helper.HasArgument("dilation_h") && helper.HasArgument("dilation_w")) {
strides.push_back(helper.GetSingleArgument<int>("dilation_h", 1));
strides.push_back(helper.GetSingleArgument<int>("dilation_w", 1));
}
auto check_and_set_default_value =
[](vector<int>& vec, int size, int value) {
if (vec.size() == 0) {
vec.resize(size, value);
}
};
check_and_set_default_value(kernel, 2, 1);
check_and_set_default_value(strides, kernel.size(), 1);
check_and_set_default_value(pads, kernel.size() * 2, 0);
check_and_set_default_value(dilations, kernel.size(), 1);
std::vector<int> output_dims;
ConvPoolOpBase<CPUContext>::InferOutputSize(
GetDimsVector(in[0]),
output_channel,
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW")),
helper.GetSingleArgument<int>("global_pooling", 0),
static_cast<LegacyPadding>(
helper.GetSingleArgument<int>("legacy_pad", LegacyPadding::NOTSET)),
dilations,
strides,
&kernel,
&pads,
&output_dims);
return {CreateTensorShape(output_dims, TensorProto::FLOAT)};
}
static std::vector<TensorShape> TensorInferenceForConv(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
return TensorInferenceForSchema(def, in, in[1].dims(0));
}
static std::vector<TensorShape> TensorInferenceForPool(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
ArgumentHelper helper(def);
auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
int num_channels =
(order == StorageOrder::NCHW ? in[0].dims(1) : in[0].dims(3));
return TensorInferenceForSchema(def, in, num_channels);
}
static std::vector<TensorShape> TensorInferenceForLC(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
const int img_ndim = in[0].dims_size() - 2;
return TensorInferenceForSchema(def, in, in[1].dims(img_ndim));
}
virtual ~ConvPoolOpBase() {}
protected:
LegacyPadding legacy_pad_;
bool global_pooling_;
vector<int> kernel_;
vector<int> dilation_;
vector<int> stride_;
vector<int> pads_;
bool float16_compute_;
int group_;
StorageOrder order_;
bool shared_buffer_;
Workspace* ws_;
static inline void ComputeSizeAndPad(
const int in_size,
const int stride,
const int kernel,
const int dilation,
LegacyPadding legacy_pad,
int* pad_head,
int* pad_tail,
int* out_size) {
const int dkernel = dilation * (kernel - 1) + 1;
switch (legacy_pad) {
case LegacyPadding::NOTSET:
// We will just use the direct padding head and tail values, but we
// will verify that they are non-negative.
CAFFE_ENFORCE_GE(in_size + *pad_head + *pad_tail, dkernel);
*out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head + *pad_tail - dkernel) /
stride +
1);
break;
case LegacyPadding::VALID:
*pad_head = 0;
*pad_tail = 0;
*out_size = (in_size - dkernel) / stride + 1;
break;
case LegacyPadding::SAME: {
CAFFE_ENFORCE(
1 == dilation, "Dilation not supported for legacy padding.");
int legacy_target_size = (in_size + stride - 1) / stride;
int pad_needed = (legacy_target_size - 1) * stride + kernel - in_size;
if (CAFFE2_PAD_HEAD_MORE) {
*pad_head = (pad_needed + 1) / 2;
} else {
*pad_head = pad_needed / 2;
}
*pad_tail = pad_needed - *pad_head;
*out_size = (in_size + pad_needed - dkernel) / stride + 1;
break;
}
case LegacyPadding::CAFFE_LEGACY_POOLING:
// This is in order to adapt Caffe's pooling padding case. In this case,
// we will only use pad_head and will compute pad_tail to match the
// old caffe pooling strategy. Also see caffe2_legacy.proto for more
// details.
CAFFE_ENFORCE_GE(*pad_head, 0);
// Here, notice that caffe casts UP while caffe2 casts DOWN for the
// output size computation.
*out_size = std::ceil(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
// If we have padding, caffe also ensures that the last pooling starts
// strictly inside the image (instead of at the padding); otherwise clip
// the last.
if (*pad_head > 0 && (*out_size - 1) * stride >= in_size + *pad_head) {
--*out_size;
}
// Now, compare the output size with the standard Caffe2 output size.
// The
// caffe2 standard output size should always be no larger than the
// output
// size of caffe.
int standard_out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
CAFFE_ENFORCE_GE(
*out_size,
standard_out_size,
"This should never happen. If this happens, double check the logic "
"above.");
if (*out_size > standard_out_size) {
LOG(WARNING)
<< "You are hitting a case where Caffe's legacy padding calculation "
"is hit. This leads to inefficient and sometimes incorrect "
"results. We are keeping this behavior for backward compatibility"
", but you are strongly recommended to move away from it.";
}
*pad_tail = *pad_head + stride * (*out_size - standard_out_size);
break;
}
}
static inline void ComputeSizeAndPad64(
const int in_size,
const int stride,
const int kernel,
const int dilation,
LegacyPadding legacy_pad,
int* pad_head,
int* pad_tail,
int64_t* out_size) {
const int dkernel = dilation * (kernel - 1) + 1;
switch (legacy_pad) {
case LegacyPadding::NOTSET:
// We will just use the direct padding head and tail values, but we
// will verify that they are non-negative.
CAFFE_ENFORCE_GE(in_size + *pad_head + *pad_tail, dkernel);
*out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head + *pad_tail - dkernel) /
stride +
1);
break;
case LegacyPadding::VALID:
*pad_head = 0;
*pad_tail = 0;
*out_size = (in_size - dkernel) / stride + 1;
break;
case LegacyPadding::SAME: {
CAFFE_ENFORCE(
1 == dilation, "Dilation not supported for legacy padding.");
int legacy_target_size = (in_size + stride - 1) / stride;
int pad_needed = (legacy_target_size - 1) * stride + kernel - in_size;
if (CAFFE2_PAD_HEAD_MORE) {
*pad_head = (pad_needed + 1) / 2;
} else {
*pad_head = pad_needed / 2;
}
*pad_tail = pad_needed - *pad_head;
*out_size = (in_size + pad_needed - dkernel) / stride + 1;
break;
}
case LegacyPadding::CAFFE_LEGACY_POOLING:
// This is in order to adapt Caffe's pooling padding case. In this case,
// we will only use pad_head and will compute pad_tail to match the
// old caffe pooling strategy. Also see caffe2_legacy.proto for more
// details.
CAFFE_ENFORCE_GE(*pad_head, 0);
// Here, notice that caffe casts UP while caffe2 casts DOWN for the
// output size computation.
*out_size = std::ceil(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
// If we have padding, caffe also ensures that the last pooling starts
// strictly inside the image (instead of at the padding); otherwise clip
// the last.
if (*pad_head > 0 && (*out_size - 1) * stride >= in_size + *pad_head) {
--*out_size;
}
// Now, compare the output size with the standard Caffe2 output size.
// The
// caffe2 standard output size should always be no larger than the
// output
// size of caffe.
int standard_out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
CAFFE_ENFORCE_GE(
*out_size,
standard_out_size,
"This should never happen. If this happens, double check the logic "
"above.");
if (*out_size > standard_out_size) {
LOG(WARNING)
<< "You are hitting a case where Caffe's legacy padding calculation "
"is hit. This leads to inefficient and sometimes incorrect "
"results. We are keeping this behavior for backward compatibility"
", but you are strongly recommended to move away from it.";
}
*pad_tail = *pad_head + stride * (*out_size - standard_out_size);
break;
}
}
// Accessors for 2D conv params.
inline int pad_t() const {
return pads_[0];
}
inline int pad_l() const {
return pads_[1];
}
inline int pad_b() const {
return pads_[2];
}
inline int pad_r() const {
return pads_[3];
}
inline int kernel_h() const {
return kernel_[0];
}
inline int kernel_w() const {
return kernel_[1];
}
inline int stride_h() const {
return stride_[0];
}
inline int stride_w() const {
return stride_[1];
}
inline int dilation_h() const {
return dilation_[0];
}
inline int dilation_w() const {
return dilation_[1];
}
private:
inline void AllocateAndCopy(const vector<int>& vec, Tensor& tensor) {
tensor.Resize(vec.size());
context_.template CopyFromCPU<int>(
vec.size(), vec.data(), tensor.template mutable_data<int>());
}
#define USE_CONV_POOL_BASE_FUNCTIONS(Context) \
USE_OPERATOR_FUNCTIONS(Context); \
using ConvPoolOpBase<Context>::pads_; \
using ConvPoolOpBase<Context>::pad_t; \
using ConvPoolOpBase<Context>::pad_l; \
using ConvPoolOpBase<Context>::pad_b; \
using ConvPoolOpBase<Context>::pad_r; \
using ConvPoolOpBase<Context>::legacy_pad_; \
using ConvPoolOpBase<Context>::global_pooling_; \
using ConvPoolOpBase<Context>::kernel_; \
using ConvPoolOpBase<Context>::kernel_h; \
using ConvPoolOpBase<Context>::kernel_w; \
using ConvPoolOpBase<Context>::dilation_; \
using ConvPoolOpBase<Context>::dilation_h; \
using ConvPoolOpBase<Context>::dilation_w; \
using ConvPoolOpBase<Context>::stride_; \
using ConvPoolOpBase<Context>::stride_h; \
using ConvPoolOpBase<Context>::stride_w; \
using ConvPoolOpBase<Context>::group_; \
using ConvPoolOpBase<Context>::order_; \
using ConvPoolOpBase<Context>::shared_buffer_; \
using ConvPoolOpBase<Context>::GetDims; \
using ConvPoolOpBase<Context>::GetDimsSize; \
using ConvPoolOpBase<Context>::SetDeviceTensor; \
using ConvPoolOpBase<Context>::HasPad; \
using ConvPoolOpBase<Context>::HasStride; \
using ConvPoolOpBase<Context>::ws_
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_