mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestTTContraction(hu.HypothesisTestCase):
|
|
@given(D=st.integers(min_value=5, max_value=20),
|
|
K=st.integers(min_value=5, max_value=20),
|
|
M=st.integers(min_value=5, max_value=20),
|
|
N=st.integers(min_value=5, max_value=20),
|
|
**hu.gcs)
|
|
def test_tt_contraction(self, D, K, M, N, gc, dc):
|
|
A = np.random.rand(K, M).astype(np.float32)
|
|
B = np.random.rand(D, K, N).astype(np.float32)
|
|
|
|
workspace.FeedBlob('A', A)
|
|
workspace.FeedBlob('B', B)
|
|
|
|
op = core.CreateOperator(
|
|
'TTContraction',
|
|
['A', 'B'],
|
|
['C'],
|
|
K=K,
|
|
M=M,
|
|
N=N)
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
def tt_contraction_ref(A_, B_):
|
|
return ((A_[:, :, np.newaxis] * B_[:, :, np.newaxis, :])
|
|
.sum(axis=1).flatten()),
|
|
|
|
# Check against numpy reference
|
|
self.assertReferenceChecks(gc, op, [A, B], tt_contraction_ref)
|
|
# Check over multiple devices
|
|
self.assertDeviceChecks(dc, op, [A, B], [0])
|
|
# Gradient check wrt A
|
|
self.assertGradientChecks(gc, op, [A, B], 0, [0])
|
|
# Gradient check wrt B
|
|
self.assertGradientChecks(gc, op, [A, B], 1, [0])
|