mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: At the end of distributed training, trainer needs to download the parameters back from parameter servers for saving the model. Currently, this parameter downloading happens at the end of job's epoch task group, which creates several problems when checkpointing is enabled for distributed training: 1. When checkpointing is enabled, we run multiple training epochs. At the end of each epoch, the model download tasks will run to collect parameters, but we won't save the model until the true end of training, so there is a big waste of resource. 2. After trainer0 downloads the parameters, these parameters take a lot of memory, so trainer0 can easily run out of memory in the next epoch of training. Our solution is to insert a parameter download task group between the job's training epoch_group and the job's exit_group. Reviewed By: azzolini Differential Revision: D6765393 fbshipit-source-id: 5a4f556fc3c1cd7834a7c406a3c0de3fccd50c49
431 lines
13 KiB
Python
431 lines
13 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
## @package net_printer
|
|
# Module caffe2.python.net_printer
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.proto.caffe2_pb2 import OperatorDef, NetDef
|
|
from caffe2.python.checkpoint import Job
|
|
from caffe2.python.core import Net, ExecutionStep, Plan
|
|
from caffe2.python.task import Task, TaskGroup, WorkspaceType, TaskOutput
|
|
from collections import defaultdict
|
|
from contextlib import contextmanager
|
|
from copy import copy
|
|
from future.utils import viewkeys
|
|
from itertools import chain
|
|
from six import binary_type, text_type
|
|
|
|
|
|
class Visitor(object):
|
|
@classmethod
|
|
def register(cls, Type):
|
|
if not(hasattr(cls, 'visitors')):
|
|
cls.visitors = []
|
|
|
|
def _register(func):
|
|
cls.visitors.append((Type, func))
|
|
return func
|
|
|
|
return _register
|
|
|
|
def __call__(self, obj, *args, **kwargs):
|
|
if obj is None:
|
|
return
|
|
for Type, func in self.__class__.visitors:
|
|
if isinstance(obj, Type):
|
|
return func(self, obj, *args, **kwargs)
|
|
raise TypeError('%s: unsupported object type: %s' % (
|
|
self.__class__.__name__, type(obj)))
|
|
|
|
|
|
class Analyzer(Visitor):
|
|
PREFIXES_TO_IGNORE = {'distributed_ctx_init'}
|
|
|
|
def __init__(self):
|
|
self.workspaces = defaultdict(lambda: defaultdict(lambda: 0))
|
|
self.workspace_ctx = []
|
|
|
|
@property
|
|
def workspace(self):
|
|
return self.workspace_ctx[-1]
|
|
|
|
@contextmanager
|
|
def set_workspace(self, node=None, ws=None, do_copy=False):
|
|
if ws is not None:
|
|
ws = ws
|
|
elif node is not None:
|
|
ws = self.workspaces[str(node)]
|
|
else:
|
|
ws = self.workspace
|
|
if do_copy:
|
|
ws = copy(ws)
|
|
self.workspace_ctx.append(ws)
|
|
yield ws
|
|
del self.workspace_ctx[-1]
|
|
|
|
def define_blob(self, blob):
|
|
self.workspace[blob] += 1
|
|
|
|
def need_blob(self, blob):
|
|
if any(blob.startswith(p) for p in Analyzer.PREFIXES_TO_IGNORE):
|
|
return
|
|
assert blob in self.workspace, 'Blob undefined: %s' % blob
|
|
|
|
|
|
@Analyzer.register(OperatorDef)
|
|
def analyze_op(analyzer, op):
|
|
for x in op.input:
|
|
analyzer.need_blob(x)
|
|
for x in op.output:
|
|
analyzer.define_blob(x)
|
|
|
|
|
|
@Analyzer.register(Net)
|
|
def analyze_net(analyzer, net):
|
|
for x in net.Proto().op:
|
|
analyzer(x)
|
|
|
|
|
|
@Analyzer.register(ExecutionStep)
|
|
def analyze_step(analyzer, step):
|
|
proto = step.Proto()
|
|
with analyzer.set_workspace(do_copy=proto.create_workspace):
|
|
if proto.report_net:
|
|
with analyzer.set_workspace(do_copy=True):
|
|
analyzer(step.get_net(proto.report_net))
|
|
all_new_blobs = set()
|
|
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
|
|
for substep in substeps:
|
|
with analyzer.set_workspace(
|
|
do_copy=proto.concurrent_substeps) as ws_in:
|
|
analyzer(substep)
|
|
if proto.should_stop_blob:
|
|
analyzer.need_blob(proto.should_stop_blob)
|
|
if proto.concurrent_substeps:
|
|
new_blobs = set(viewkeys(ws_in)) - set(viewkeys(analyzer.workspace))
|
|
assert len(all_new_blobs & new_blobs) == 0, (
|
|
'Error: Blobs created by multiple parallel steps: %s' % (
|
|
', '.join(all_new_blobs & new_blobs)))
|
|
all_new_blobs |= new_blobs
|
|
for x in all_new_blobs:
|
|
analyzer.define_blob(x)
|
|
|
|
|
|
@Analyzer.register(Task)
|
|
def analyze_task(analyzer, task):
|
|
# check that our plan protobuf is not too large (limit of 64Mb)
|
|
step = task.get_step()
|
|
plan = Plan(task.node)
|
|
plan.AddStep(step)
|
|
proto_len = len(plan.Proto().SerializeToString())
|
|
assert proto_len < 2 ** 26, (
|
|
'Due to a protobuf limitation, serialized tasks must be smaller '
|
|
'than 64Mb, but this task has {} bytes.' % proto_len)
|
|
|
|
is_private = task.workspace_type() != WorkspaceType.GLOBAL
|
|
with analyzer.set_workspace(do_copy=is_private):
|
|
analyzer(step)
|
|
|
|
|
|
@Analyzer.register(TaskGroup)
|
|
def analyze_task_group(analyzer, tg):
|
|
for task in tg.tasks_by_node().tasks():
|
|
with analyzer.set_workspace(node=task.node):
|
|
analyzer(task)
|
|
|
|
|
|
@Analyzer.register(Job)
|
|
def analyze_job(analyzer, job):
|
|
analyzer(job.init_group)
|
|
analyzer(job.epoch_group)
|
|
|
|
|
|
def analyze(obj):
|
|
"""
|
|
Given a Job, visits all the execution steps making sure that:
|
|
- no undefined blobs will be found during excution
|
|
- no blob with same name is defined in concurrent steps
|
|
"""
|
|
Analyzer()(obj)
|
|
|
|
|
|
class Text(object):
|
|
def __init__(self):
|
|
self._indent = 0
|
|
self._lines_in_context = [0]
|
|
self.lines = []
|
|
|
|
@contextmanager
|
|
def context(self, text):
|
|
if text is not None:
|
|
self.add('with %s:' % text)
|
|
self._indent += 4
|
|
self._lines_in_context.append(0)
|
|
yield
|
|
if text is not None:
|
|
if self._lines_in_context[-1] == 0:
|
|
self.add('pass')
|
|
self._indent -= 4
|
|
del self._lines_in_context[-1]
|
|
|
|
def add(self, text):
|
|
self._lines_in_context[-1] += 1
|
|
self.lines.append((' ' * self._indent) + text)
|
|
|
|
def __str__(self):
|
|
return '\n'.join(self.lines)
|
|
|
|
|
|
class Printer(Visitor, Text):
|
|
def __init__(self, factor_prefixes=False, c2_syntax=True):
|
|
super(Visitor, self).__init__()
|
|
super(Text, self).__init__()
|
|
self.factor_prefixes = factor_prefixes
|
|
self.c2_syntax = c2_syntax
|
|
self.c2_net_name = None
|
|
|
|
|
|
def _sanitize_str(s):
|
|
if isinstance(s, text_type):
|
|
sanitized = s
|
|
elif isinstance(s, binary_type):
|
|
sanitized = s.decode('ascii', errors='ignore')
|
|
else:
|
|
sanitized = str(s)
|
|
if len(sanitized) < 64:
|
|
return "'%s'" % sanitized
|
|
else:
|
|
return "'%s'" % sanitized[:64] + '...<+len=%d>' % (len(sanitized) - 64)
|
|
|
|
|
|
def _arg_val(arg):
|
|
if arg.HasField('f'):
|
|
return str(arg.f)
|
|
if arg.HasField('i'):
|
|
return str(arg.i)
|
|
if arg.HasField('s'):
|
|
return _sanitize_str(arg.s)
|
|
if arg.floats:
|
|
return str(list(arg.floats))
|
|
if arg.ints:
|
|
return str(list(arg.ints))
|
|
if arg.strings:
|
|
return str([_sanitize_str(s) for s in arg.strings])
|
|
return '[]'
|
|
|
|
|
|
def commonprefix(m):
|
|
"Given a list of strings, returns the longest common prefix"
|
|
if not m:
|
|
return ''
|
|
s1 = min(m)
|
|
s2 = max(m)
|
|
for i, c in enumerate(s1):
|
|
if c != s2[i]:
|
|
return s1[:i]
|
|
return s1
|
|
|
|
|
|
def format_value(val):
|
|
if isinstance(val, list):
|
|
return '[%s]' % ', '.join("'%s'" % str(v) for v in val)
|
|
else:
|
|
return str(val)
|
|
|
|
|
|
def factor_prefix(vals, do_it):
|
|
vals = [format_value(v) for v in vals]
|
|
prefix = commonprefix(vals) if len(vals) > 1 and do_it else ''
|
|
joined = ', '.join(v[len(prefix):] for v in vals)
|
|
return '%s[%s]' % (prefix, joined) if prefix else joined
|
|
|
|
|
|
def call(op, inputs=None, outputs=None, factor_prefixes=False):
|
|
if not inputs:
|
|
inputs = ''
|
|
else:
|
|
inputs_v = [a for a in inputs if not isinstance(a, tuple)]
|
|
inputs_kv = [a for a in inputs if isinstance(a, tuple)]
|
|
inputs = ', '.join(
|
|
x
|
|
for x in chain(
|
|
[factor_prefix(inputs_v, factor_prefixes)],
|
|
('%s=%s' % kv for kv in inputs_kv),
|
|
)
|
|
if x
|
|
)
|
|
call = '%s(%s)' % (op, inputs)
|
|
return call if not outputs else '%s = %s' % (
|
|
factor_prefix(outputs, factor_prefixes), call)
|
|
|
|
|
|
def format_device_option(dev_opt):
|
|
if not dev_opt or not (
|
|
dev_opt.device_type or dev_opt.cuda_gpu_id or dev_opt.node_name):
|
|
return None
|
|
return call(
|
|
'DeviceOption',
|
|
[dev_opt.device_type, dev_opt.cuda_gpu_id, "'%s'" % dev_opt.node_name])
|
|
|
|
|
|
@Printer.register(OperatorDef)
|
|
def print_op(text, op):
|
|
args = [(a.name, _arg_val(a)) for a in op.arg]
|
|
dev_opt_txt = format_device_option(op.device_option)
|
|
if dev_opt_txt:
|
|
args.append(('device_option', dev_opt_txt))
|
|
|
|
if text.c2_net_name:
|
|
text.add(call(
|
|
text.c2_net_name + '.' + op.type,
|
|
[list(op.input), list(op.output)] + args))
|
|
else:
|
|
text.add(call(
|
|
op.type,
|
|
list(op.input) + args,
|
|
op.output,
|
|
factor_prefixes=text.factor_prefixes))
|
|
for arg in op.arg:
|
|
if arg.HasField('n'):
|
|
with text.context('arg: %s' % arg.name):
|
|
text(arg.n)
|
|
|
|
@Printer.register(NetDef)
|
|
def print_net_def(text, net_def):
|
|
if text.c2_syntax:
|
|
text.add(call('core.Net', ["'%s'" % net_def.name], [net_def.name]))
|
|
text.c2_net_name = net_def.name
|
|
else:
|
|
text.add('# net: %s' % net_def.name)
|
|
for op in net_def.op:
|
|
text(op)
|
|
if text.c2_syntax:
|
|
text.c2_net_name = None
|
|
|
|
|
|
@Printer.register(Net)
|
|
def print_net(text, net):
|
|
text(net.Proto())
|
|
|
|
|
|
def _get_step_context(step):
|
|
proto = step.Proto()
|
|
if proto.should_stop_blob:
|
|
return call('loop'), False
|
|
if proto.num_iter and proto.num_iter != 1:
|
|
return call('loop', [proto.num_iter]), False
|
|
if proto.num_concurrent_instances > 1:
|
|
return (
|
|
call('parallel',
|
|
[('num_instances', proto.num_concurrent_instances)]),
|
|
len(step.Substeps()) > 1)
|
|
concurrent = proto.concurrent_substeps and len(step.Substeps()) > 1
|
|
if concurrent:
|
|
return call('parallel'), True
|
|
if proto.report_net:
|
|
return call('run_once'), False
|
|
return None, False
|
|
|
|
|
|
@Printer.register(ExecutionStep)
|
|
def print_step(text, step):
|
|
proto = step.Proto()
|
|
step_ctx, do_substep = _get_step_context(step)
|
|
with text.context(step_ctx):
|
|
if proto.report_net:
|
|
with text.context(call('report_net', [proto.report_interval])):
|
|
text(step.get_net(proto.report_net))
|
|
substeps = step.Substeps() + [step.get_net(n) for n in proto.network]
|
|
for substep in substeps:
|
|
sub_proto = (
|
|
substep.Proto() if isinstance(substep, ExecutionStep) else None)
|
|
if sub_proto is not None and sub_proto.run_every_ms:
|
|
substep_ctx = call(
|
|
'reporter',
|
|
[str(substep), ('interval_ms', sub_proto.run_every_ms)])
|
|
elif do_substep:
|
|
title = (
|
|
'workspace'
|
|
if sub_proto is not None and sub_proto.create_workspace else
|
|
'step')
|
|
substep_ctx = call(title, [str(substep)])
|
|
else:
|
|
substep_ctx = None
|
|
with text.context(substep_ctx):
|
|
text(substep)
|
|
if proto.should_stop_blob:
|
|
text.add(call('yield stop_if', [proto.should_stop_blob]))
|
|
|
|
|
|
def _print_task_output(x):
|
|
assert isinstance(x, TaskOutput)
|
|
return 'Output[' + ', '.join(str(x) for x in x.names) + ']'
|
|
|
|
|
|
@Printer.register(Task)
|
|
def print_task(text, task):
|
|
outs = ', '.join(_print_task_output(o) for o in task.outputs())
|
|
context = [('node', task.node), ('name', task.name), ('outputs', outs)]
|
|
with text.context(call('Task', context)):
|
|
text(task.get_step())
|
|
|
|
|
|
@Printer.register(TaskGroup)
|
|
def print_task_group(text, tg, header=None):
|
|
with text.context(header or call('TaskGroup')):
|
|
for task in tg.tasks_by_node().tasks():
|
|
text(task)
|
|
|
|
|
|
@Printer.register(Job)
|
|
def print_job(text, job):
|
|
text(job.init_group, 'Job.current().init_group')
|
|
text(job.epoch_group, 'Job.current().epoch_group')
|
|
with text.context('Job.current().stop_signals'):
|
|
for out in job.stop_signals:
|
|
text.add(_print_task_output(out))
|
|
text(job.download_group, 'Job.current().download_group')
|
|
text(job.exit_group, 'Job.current().exit_group')
|
|
|
|
|
|
def to_string(obj, **kwargs):
|
|
"""
|
|
Given a Net, ExecutionStep, Task, TaskGroup or Job, produces a string
|
|
with detailed description of the execution steps.
|
|
"""
|
|
printer = Printer(**kwargs)
|
|
printer(obj)
|
|
return str(printer)
|
|
|
|
|
|
def debug_net(net):
|
|
"""
|
|
Given a Net, produce another net that logs info about the operator call
|
|
before each operator execution. Use for debugging purposes.
|
|
"""
|
|
assert isinstance(net, Net)
|
|
debug_net = Net(str(net))
|
|
assert isinstance(net, Net)
|
|
for op in net.Proto().op:
|
|
text = Text()
|
|
print_op(op, text)
|
|
debug_net.LogInfo(str(text))
|
|
debug_net.Proto().op.extend([op])
|
|
return debug_net
|