pytorch/caffe2/python/hypothesis_test_util.py
Pieter Noordhuis 9835ca9bac Ensure indices list in sparse optimizer tests is unique
Summary:
There were no dimensionality constraints to the generated indices
array, causing many examples being generated and filtered out. Instead,
we should ensure the probability of unique indices is high.

There is a better fix for this by using the `unique` keyword argument
to `hypothesis.extra.numpy.arrays`, but this is available only in
hypothesis version 3.28.0 and later.

This is related to #1536 and #1599.

Once this change has proven to be OK, we can modify the other tests
that now have health check suppression enabled as well.
Closes https://github.com/caffe2/caffe2/pull/1686

Reviewed By: Yangqing

Differential Revision: D6651789

Pulled By: pietern

fbshipit-source-id: d80886c9ccf0a7a842a7580a279f33a2d6cca97c
2018-01-03 12:19:14 -08:00

671 lines
23 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package hypothesis_test_util
# Module caffe2.python.hypothesis_test_util
"""
The Hypothesis library uses *property-based testing* to check
invariants about the code under test under a variety of random inputs.
The key idea here is to express properties of the code under test
(e.g. that it passes a gradient check, that it implements a reference
function, etc), and then generate random instances and verify they
satisfy these properties.
The main functions of interest are exposed on `HypothesisTestCase`.
You can usually just add a short function in this to generate an
arbitrary number of test cases for your operator.
The key functions are:
- `assertDeviceChecks(devices, op, inputs, outputs)`. This asserts that the
operator computes the same outputs, regardless of which device it is executed
on.
- `assertGradientChecks(device, op, inputs, output_,
outputs_with_grads)`. This implements a standard numerical gradient checker
for the operator in question.
- `assertReferenceChecks(device, op, inputs, reference)`. This runs the
reference function (effectively calling `reference(*inputs)`, and comparing
that to the output of output.
`hypothesis_test_util.py` exposes some useful pre-built samplers.
- `hu.gcs` - a gradient checker device (`gc`) and device checker devices (`dc`)
- `hu.gcs_cpu_only` - a CPU-only gradient checker device (`gc`) and
device checker devices (`dc`). Used for when your operator is only
implemented on the CPU.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.proto import caffe2_pb2
from caffe2.python import (
workspace, device_checker, gradient_checker, test_util, core)
import contextlib
import copy
import functools
import hypothesis
import hypothesis.extra.numpy
import hypothesis.strategies as st
import logging
import numpy as np
import os
def is_sandcastle():
if os.getenv('SANDCASTLE') == '1':
return True
elif os.getenv('TW_JOB_USER') == 'sandcastle':
return True
return False
def is_travis():
return 'TRAVIS' in os.environ
hypothesis.settings.register_profile(
"sandcastle",
hypothesis.settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
min_satisfying_examples=1,
max_examples=100,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.register_profile(
"dev",
hypothesis.settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
min_satisfying_examples=1,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.register_profile(
"debug",
hypothesis.settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
min_satisfying_examples=1,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.load_profile(
'sandcastle' if is_sandcastle() else os.getenv('CAFFE2_HYPOTHESIS_PROFILE',
'dev')
)
def dims(min_value=1, max_value=5):
return st.integers(min_value=min_value, max_value=max_value)
def elements_of_type(dtype=np.float32, filter_=None):
elems = None
if dtype in (np.float16, np.float32, np.float64):
elems = st.floats(min_value=-1.0, max_value=1.0)
elif dtype is np.int32:
elems = st.integers(min_value=0, max_value=2 ** 31 - 1)
elif dtype is np.int64:
elems = st.integers(min_value=0, max_value=2 ** 63 - 1)
elif dtype is np.bool:
elems = st.booleans()
else:
raise ValueError("Unexpected dtype without elements provided")
return elems if filter_ is None else elems.filter(filter_)
def arrays(dims, dtype=np.float32, elements=None):
if elements is None:
elements = elements_of_type(dtype)
return hypothesis.extra.numpy.arrays(
dtype,
dims,
elements=elements,
)
def tensor(min_dim=1,
max_dim=4,
dtype=np.float32,
elements=None,
**kwargs):
dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
return dims_.flatmap(
lambda dims: arrays(dims, dtype, elements))
def tensor1d(min_len=1, max_len=64, dtype=np.float32, elements=None):
return tensor(1, 1, dtype, elements, min_value=min_len, max_value=max_len)
def segment_ids(size, is_sorted):
if size == 0:
return st.just(np.empty(shape=[0], dtype=np.int32))
if is_sorted:
return arrays(
[size],
dtype=np.int32,
elements=st.booleans()).map(
lambda x: np.cumsum(x, dtype=np.int32) - x[0])
else:
return arrays(
[size],
dtype=np.int32,
elements=st.integers(min_value=0, max_value=2 * size))
def lengths(size, min_segments=None, max_segments=None, **kwargs):
# First generate number of boarders between segments
# Then create boarder values and add 0 and size
# By sorting and computing diff we convert them to lengths of
# possible 0 value
if min_segments is None:
min_segments = 0
if max_segments is None:
max_segments = size
assert min_segments >= 0
assert min_segments <= max_segments
if size == 0 and max_segments == 0:
return st.just(np.empty(shape=[0], dtype=np.int32))
assert max_segments > 0, "size is not 0, need at least one segment"
return st.integers(
min_value=max(min_segments - 1, 0), max_value=max_segments - 1
).flatmap(
lambda num_borders:
hypothesis.extra.numpy.arrays(
np.int32, num_borders, elements=st.integers(
min_value=0, max_value=size
)
)
).map(
lambda x: np.append(x, np.array([0, size], dtype=np.int32))
).map(sorted).map(np.diff)
def segmented_tensor(
min_dim=1,
max_dim=4,
dtype=np.float32,
is_sorted=True,
elements=None,
segment_generator=segment_ids,
allow_empty=False,
**kwargs
):
gen_empty = st.booleans() if allow_empty else st.just(False)
data_dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
data_dims_ = st.tuples(
gen_empty, data_dims_
).map(lambda pair: ([0] if pair[0] else []) + pair[1])
return data_dims_.flatmap(lambda data_dims: st.tuples(
arrays(data_dims, dtype, elements),
segment_generator(data_dims[0], is_sorted=is_sorted),
))
def lengths_tensor(min_segments=None, max_segments=None, *args, **kwargs):
gen = functools.partial(
lengths, min_segments=min_segments, max_segments=max_segments)
return segmented_tensor(*args, segment_generator=gen, **kwargs)
def sparse_segmented_tensor(min_dim=1, max_dim=4, dtype=np.float32,
is_sorted=True, elements=None, allow_empty=False,
segment_generator=segment_ids, itype=np.int64,
**kwargs):
gen_empty = st.booleans() if allow_empty else st.just(False)
data_dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
all_dims_ = st.tuples(gen_empty, data_dims_).flatmap(
lambda pair: st.tuples(
st.just(pair[1]),
(st.integers(min_value=1, max_value=pair[1][0]) if not pair[0]
else st.just(0)),
))
return all_dims_.flatmap(lambda dims: st.tuples(
arrays(dims[0], dtype, elements),
arrays(dims[1], dtype=itype, elements=st.integers(
min_value=0, max_value=dims[0][0] - 1)),
segment_generator(dims[1], is_sorted=is_sorted),
))
def sparse_lengths_tensor(**kwargs):
return sparse_segmented_tensor(segment_generator=lengths, **kwargs)
def tensors(n, min_dim=1, max_dim=4, dtype=np.float32, elements=None, **kwargs):
dims_ = st.lists(dims(**kwargs), min_size=min_dim, max_size=max_dim)
return dims_.flatmap(
lambda dims: st.lists(
arrays(dims, dtype, elements),
min_size=n,
max_size=n))
def tensors1d(n, min_len=1, max_len=64, dtype=np.float32, elements=None):
return tensors(
n, 1, 1, dtype, elements, min_value=min_len, max_value=max_len
)
cpu_do = caffe2_pb2.DeviceOption()
gpu_do = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CUDA)
device_options = [cpu_do] + ([gpu_do] if workspace.has_gpu_support else [])
# Include device option for each GPU
expanded_device_options = [cpu_do] + (
[caffe2_pb2.DeviceOption(device_type=caffe2_pb2.CUDA, cuda_gpu_id=i)
for i in range(workspace.NumCudaDevices())]
if workspace.has_gpu_support else [])
def device_checker_device_options():
return st.just(device_options)
def gradient_checker_device_option():
return st.sampled_from(device_options)
gcs = dict(
gc=gradient_checker_device_option(),
dc=device_checker_device_options()
)
gcs_cpu_only = dict(gc=st.sampled_from([cpu_do]), dc=st.just([cpu_do]))
gcs_gpu_only = dict(gc=st.sampled_from([gpu_do]), dc=st.just([gpu_do]))
@contextlib.contextmanager
def temp_workspace(name=b"temp_ws"):
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace(name, True)
yield
workspace.ResetWorkspace()
workspace.SwitchWorkspace(old_ws_name)
def runOpBenchmark(
device_option,
op,
inputs,
input_device_options=None,
iterations=10,
):
if input_device_options is None:
input_device_options = {}
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
net = caffe2_pb2.NetDef()
net.op.extend([op])
net.name = op.name if op.name else "test"
with temp_workspace():
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=input_device_options.get(n, device_option)
)
workspace.CreateNet(net)
ret = workspace.BenchmarkNet(net.name, 1, iterations, True)
return ret
class HypothesisTestCase(test_util.TestCase):
"""
A unittest.TestCase subclass with some helper functions for
utilizing the `hypothesis` (hypothesis.readthedocs.io) library.
"""
def assertDeviceChecks(
self,
device_options,
op,
inputs,
outputs_to_check,
input_device_options=None,
threshold=0.01
):
"""
Asserts that the operator computes the same outputs, regardless of
which device it is executed on.
Useful for checking the consistency of GPU and CPU
implementations of operators.
Usage example:
@given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs)
def test_sum(self, inputs, in_place, gc, dc):
op = core.CreateOperator("Sum", ["X1", "X2"],
["Y" if not in_place else "X1"])
X1, X2 = inputs
self.assertDeviceChecks(dc, op, [X1, X2], [0])
"""
dc = device_checker.DeviceChecker(
threshold,
device_options=device_options
)
self.assertTrue(
dc.CheckSimple(op, inputs, outputs_to_check, input_device_options)
)
def assertGradientChecks(
self,
device_option,
op,
inputs,
outputs_to_check,
outputs_with_grads,
grad_ops=None,
threshold=0.005,
stepsize=0.05,
input_device_options=None,
):
"""
Implements a standard numerical gradient checker for the operator
in question.
Useful for checking the consistency of the forward and
backward implementations of operators.
Usage example:
@given(inputs=hu.tensors(n=2), in_place=st.booleans(), **hu.gcs)
def test_sum(self, inputs, in_place, gc, dc):
op = core.CreateOperator("Sum", ["X1", "X2"],
["Y" if not in_place else "X1"])
X1, X2 = inputs
self.assertGradientChecks(gc, op, [X1, X2], 0, [0])
"""
gc = gradient_checker.GradientChecker(
stepsize=stepsize,
threshold=threshold,
device_option=device_option,
workspace_name=str(device_option),
)
res, grad, grad_estimated = gc.CheckSimple(
op, inputs, outputs_to_check, outputs_with_grads,
grad_ops=grad_ops,
input_device_options=input_device_options
)
self.assertEqual(grad.shape, grad_estimated.shape)
self.assertTrue(
res,
"Gradient check failed for input " + str(op.input[outputs_to_check])
)
def _assertGradReferenceChecks(
self,
op,
inputs,
ref_outputs,
output_to_grad,
grad_reference,
threshold=1e-4,
):
grad_blob_name = output_to_grad + '_grad'
grad_ops, grad_map = core.GradientRegistry.GetBackwardPass(
[op], {output_to_grad: grad_blob_name})
output_grad = workspace.FetchBlob(output_to_grad)
grad_ref_outputs = grad_reference(output_grad, ref_outputs, inputs)
workspace.FeedBlob(grad_blob_name, workspace.FetchBlob(output_to_grad))
workspace.RunOperatorsOnce(grad_ops)
self.assertEqual(len(grad_ref_outputs), len(inputs))
for (n, ref) in zip(op.input, grad_ref_outputs):
grad_names = grad_map.get(n)
if not grad_names:
# no grad for this input
self.assertIsNone(ref)
else:
if isinstance(grad_names, core.BlobReference):
# dense gradient
ref_vals = ref
ref_indices = None
val_name = grad_names
else:
# sparse gradient
ref_vals, ref_indices = ref
val_name = grad_names.values
vals = workspace.FetchBlob(str(val_name))
np.testing.assert_allclose(
vals,
ref_vals,
atol=threshold,
rtol=threshold,
err_msg='Gradient {0} (x) is not matching the reference (y)'
.format(val_name),
)
if ref_indices is not None:
indices = workspace.FetchBlob(str(grad_names.indices))
np.testing.assert_allclose(indices, ref_indices,
atol=1e-4, rtol=1e-4)
def _assertInferTensorChecks(self, name, shapes, types, output):
if name not in shapes:
# No inferred shape or type available
return
output = workspace.FetchBlob(name)
if type(output) is np.ndarray:
if output.dtype == np.dtype('float64'):
correct_type = caffe2_pb2.TensorProto.DOUBLE
elif output.dtype == np.dtype('float32'):
correct_type = caffe2_pb2.TensorProto.FLOAT
elif output.dtype == np.dtype('int32'):
correct_type = caffe2_pb2.TensorProto.INT32
elif output.dtype == np.dtype('int64'):
correct_type = caffe2_pb2.TensorProto.INT64
else:
correct_type = "unknown {}".format(np.dtype)
else:
correct_type = str(type(output))
try:
np.testing.assert_array_equal(
np.array(shapes[name]).astype(np.int32),
np.array(output.shape).astype(np.int32),
err_msg='Shape {} mismatch: {} vs. {}'.format(
name,
shapes[name],
output.shape))
# BUG: Workspace blob type not being set correctly T16121392
if correct_type != caffe2_pb2.TensorProto.INT32:
return
np.testing.assert_equal(
types[name],
correct_type,
err_msg='Type {} mismatch: {} vs. {}'.format(
name, types[name], correct_type,
)
)
except AssertionError as e:
# Temporarily catch these assertion errors when validating
# inferred shape and type info
logging.warning(str(e))
if os.getenv('CAFFE2_ASSERT_SHAPEINFERENCE') == '1':
raise e
def assertReferenceChecks(
self,
device_option,
op,
inputs,
reference,
input_device_options=None,
threshold=1e-4,
output_to_grad=None,
grad_reference=None,
atol=None,
outputs_to_check=None,
):
"""
This runs the reference Python function implementation
(effectively calling `reference(*inputs)`, and compares that
to the output of output, with an absolute/relative tolerance
given by the `threshold` parameter.
Useful for checking the implementation matches the Python
(typically NumPy) implementation of the same functionality.
Usage example:
@given(X=hu.tensor(), inplace=st.booleans(), **hu.gcs)
def test_softsign(self, X, inplace, gc, dc):
op = core.CreateOperator(
"Softsign", ["X"], ["X" if inplace else "Y"])
def softsign(X):
return (X / (1 + np.abs(X)),)
self.assertReferenceChecks(gc, op, [X], softsign)
"""
if input_device_options is None:
input_device_options = {}
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
if (len(op.input) > len(inputs)):
raise ValueError(
'must supply an input for each input on the op: %s vs %s' %
(op.input, inputs))
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=input_device_options.get(n, device_option)
)
net = core.Net("opnet")
net.Proto().op.extend([op])
test_shape_inference = False
try:
(shapes, types) = workspace.InferShapesAndTypes([net])
test_shape_inference = True
except RuntimeError as e:
# Temporarily catch runtime errors when inferring shape
# and type info
logging.warning(str(e))
if os.getenv('CAFFE2_ASSERT_SHAPEINFERENCE') == '1':
raise e
workspace.RunNetOnce(net)
reference_outputs = reference(*inputs)
if not (isinstance(reference_outputs, tuple) or
isinstance(reference_outputs, list)):
raise RuntimeError(
"You are providing a wrong reference implementation. A "
"proper one should return a tuple/list of numpy arrays.")
if not outputs_to_check:
self.assertEqual(len(reference_outputs), len(op.output))
outputs_to_check = list(range(len(op.output)))
outs = []
for (output_index, ref) in zip(outputs_to_check, reference_outputs):
output_blob_name = op.output[output_index]
output = workspace.FetchBlob(output_blob_name)
if output.dtype.kind in ('S', 'O'):
np.testing.assert_array_equal(output, ref)
else:
if atol is None:
atol = threshold
np.testing.assert_allclose(
output, ref, atol=atol, rtol=threshold,
err_msg=(
'Output {0} is not matching the reference'.format(
output_blob_name,
)),
)
if test_shape_inference:
self._assertInferTensorChecks(
output_blob_name, shapes, types, output)
outs.append(output)
if grad_reference is not None:
assert output_to_grad is not None, \
"If grad_reference is set," \
"output_to_grad has to be set as well"
with core.DeviceScope(device_option):
self._assertGradReferenceChecks(
op, inputs, reference_outputs,
output_to_grad, grad_reference,
threshold=threshold)
return outs
def assertValidationChecks(
self,
device_option,
op,
inputs,
validator,
input_device_options=None,
as_kwargs=True,
init_net=None,
):
if input_device_options is None:
input_device_options = {}
if as_kwargs:
assert len(set(list(op.input) + list(op.output))) == \
len(op.input) + len(op.output), \
"in-place ops are not supported in as_kwargs mode"
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=input_device_options.get(n, device_option)
)
if init_net:
workspace.RunNetOnce(init_net)
workspace.RunOperatorOnce(op)
outputs = [workspace.FetchBlob(n) for n in op.output]
if as_kwargs:
validator(**dict(zip(
list(op.input) + list(op.output), inputs + outputs)))
else:
validator(inputs=inputs, outputs=outputs)
def assertRunOpRaises(
self,
device_option,
op,
inputs,
input_device_options=None,
exception=(Exception,),
regexp=None,
):
if input_device_options is None:
input_device_options = {}
op = copy.deepcopy(op)
op.device_option.CopyFrom(device_option)
with temp_workspace():
for (n, b) in zip(op.input, inputs):
workspace.FeedBlob(
n,
b,
device_option=input_device_options.get(n, device_option)
)
if regexp is None:
self.assertRaises(exception, workspace.RunOperatorOnce, op)
else:
self.assertRaisesRegexp(
exception, regexp, workspace.RunOperatorOnce, op)