mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/50577 Learning rate schedulers had not yet been implemented for the C++ API. This pull request introduces the learning rate scheduler base class and the StepLR subclass. Furthermore, it modifies the existing OptimizerOptions such that the learning rate scheduler can modify the learning rate. Pull Request resolved: https://github.com/pytorch/pytorch/pull/52268 Reviewed By: mrshenli Differential Revision: D26818387 Pulled By: glaringlee fbshipit-source-id: 2b28024a8ea7081947c77374d6d643fdaa7174c1 |
||
|---|---|---|
| .. | ||
| any.cpp | ||
| autograd.cpp | ||
| CMakeLists.txt | ||
| dataloader.cpp | ||
| dispatch.cpp | ||
| enum.cpp | ||
| expanding-array.cpp | ||
| fft.cpp | ||
| functional.cpp | ||
| init_baseline.h | ||
| init_baseline.py | ||
| init.cpp | ||
| integration.cpp | ||
| jit.cpp | ||
| memory.cpp | ||
| misc.cpp | ||
| module.cpp | ||
| moduledict.cpp | ||
| modulelist.cpp | ||
| modules.cpp | ||
| namespace.cpp | ||
| nn_utils.cpp | ||
| operations.cpp | ||
| optim_baseline.h | ||
| optim_baseline.py | ||
| optim.cpp | ||
| ordered_dict.cpp | ||
| parallel_benchmark.cpp | ||
| parallel.cpp | ||
| parameterdict.cpp | ||
| parameterlist.cpp | ||
| README.md | ||
| rnn.cpp | ||
| sequential.cpp | ||
| serialize.cpp | ||
| special.cpp | ||
| static.cpp | ||
| support.cpp | ||
| support.h | ||
| tensor_cuda.cpp | ||
| tensor_flatten.cpp | ||
| tensor_indexing.cpp | ||
| tensor_options_cuda.cpp | ||
| tensor_options.cpp | ||
| tensor.cpp | ||
| torch_include.cpp | ||
| transformer.cpp | ||
C++ Frontend Tests
In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.
CUDA Tests
To make a test runnable only on platforms with CUDA, you should suffix your
test with _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_CUDA) { }
To make it runnable only on platforms with at least two CUDA machines, suffix
it with _MultiCUDA instead of _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_MultiCUDA) { }
There is logic in main.cpp that detects the availability and number of CUDA
devices and supplies the appropriate negative filters to GoogleTest.
Integration Tests
Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:
$ python tools/download_mnist.py -d test/cpp/api/mnist
The required paths will be referenced as test/cpp/api/mnist/... in the test
code, so you must run the integration tests from the PyTorch root folder.