pytorch/torch/distributed/_spmd/api.py
Shen Li 379fb47654 [SPMD] Support foreach optimizers with functionalization (#97853)
My first attempt was to apply the same solution as how proxy_tensor.py
handles other inplace ops. However, foreach is different in the way
that it's schema is `native_functions.yaml` does not return anything,
whereas ops like `addcmul_` and `addcdiv_` do return Tensors (Thanks
bdhirsh for teaching me this!). As a result, the proxy output
during tracing does not wrap anything, and hence we cannot correctly
connect it with subsequent operators. Modifying `native_functions.yaml`
is not a preferred solution. After discussing with bdhirsh, the
temporary solution is to do foreach functionalization as a graph
pass for now. Later, when https://github.com/pytorch/pytorch/issues/97852
is addressed, we will switch to default functionalization.

Edit: the latest version follows @bdhirsh 's suggestion on using
`make_fx` `decomposition_table` instead of implementing manual
fx.Graph tranforms to functionalize `_foreach_add_`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97853
Approved by: https://github.com/fegin, https://github.com/wanchaol
2023-03-30 11:27:10 +00:00

395 lines
14 KiB
Python

from abc import ABC, abstractmethod
from contextlib import contextmanager, nullcontext
from copy import copy
from dataclasses import dataclass
from functools import wraps, partial
from typing import (
Any,
Callable,
Dict,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils._pytree as pytree
from torch import fx
from torch.distributed._spmd.distribute import (
_convert_to_distributed,
distribute,
Schema,
)
from torch.distributed._spmd.distributed_graph import DistributedGraph
from torch.distributed._tensor import (
DeviceMesh,
Placement,
Replicate,
Shard,
)
from torch.nn.utils import stateless
from functorch import make_fx
from torch.nn.utils._named_member_accessor import NamedMemberAccessor
class SPMD(nn.Module):
def __init__(
self,
module: nn.Module,
schema: Schema,
input_schemas: Sequence[Placement] = tuple(),
) -> None:
"""
Given a non-distributed nn.Module, distribute the module and apply
optimizations over the distributed module (fx.GraphModule).
Args:
module (nn.Module): The target module.
schema (Schema): The distributed schema.
input_schemas (Sequence[Placement]): The schemas of the inputs.
"""
super().__init__()
assert schema.placements == [
Replicate()
], "SPMD only support Replicate() parameters for now"
# TODO: Fix model initialization with coalescing.
# This needs to happen post model transformation.
# Consider an explicit model init API.
for p in module.parameters():
dist.broadcast(p, src=0)
self._param_schema = schema
self._input_schemas = input_schemas
self._compiled_m: Optional[nn.Module] = None
self._dist_graph = DistributedGraph(orig_module=module)
def forward(
self, *args: Tuple[object], **kwargs: Dict[str, object]
) -> object:
if self._compiled_m is None:
self._compiled_m = distribute(
self._dist_graph,
self._param_schema,
self._input_schemas,
*args,
**kwargs,
)
assert self._compiled_m is not None
return self._compiled_m(*args, **kwargs)
class Override(ABC):
r"""
Override the tracing and transformation behavior of :meth:`~torch.distributed._spmd.compile`.
This is useful when any part of the model is not traceable or if you prefer
to not trace it due to any reason. More specifically, users can implement
:meth:`torch.distributed._spmd.Override.replacement` to replace an original
submodule with the return new submodule. The new submodule contrains
operations that users preferred to be traced, which simply be a dummy
placeholder operator. After tracing, users can implement
:meth:`torch.distributed._spmd.Override.transform` to transform the traced
graph, where the dummy placeholder operator serves as an anchor to insert
new sub-graphs.
"""
@abstractmethod
def replacement(self, orig_submodule: torch.nn.Module) -> torch.nn.Module:
r"""
Implement this method to return a new :class:`nn.Module` instance to
replace the ``orig_submodule`` argument in the model. This helps if
``orig_submodule`` is not traceable or should not be traced.
Args:
orig_submodule (class:`nn.Module`): original submodule instance to replace.
Returns:
A new :class:`nn.Module` instance to replace the original one.
"""
pass
@abstractmethod
def transform(
self, gm: fx.GraphModule, schema_map: Dict[str, Schema]
) -> fx.Graph:
r"""
Given a DTensor-expanded graph and shardig schema for every node,
conduct additional transformation for the sub-graph from the :class:`nn.Module`
returned by :meth:`torch.distributed._spmd.Override.replacement` if
necessary.
Args:
gm (:class:`fx.Graph`): a DTensor-expanded graph.
schema_map (Dict[str, :class:`Schema`]): a dictionary maps from node
name to DTensor schema.
Returns:
The :class:`fx.Graph` after transformation.
"""
pass
def _dtensor_expand(
gm: fx.GraphModule,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
named_states: Dict[str, Any],
params_and_buffers: Dict[str, Any],
) -> Tuple[fx.GraphModule, Dict[str, Schema]]:
flat_args, _ = pytree.tree_flatten(list(args) + list(kwargs.values()))
mesh = DeviceMesh("cuda", torch.arange(dist.get_world_size()).cuda())
shard_schema: Schema = Schema(mesh=mesh, placements=[Shard(0)])
# FIXME: allow other sharding schemas
replicate_schema: Schema = Schema(mesh=mesh, placements=[Replicate()])
inps, schemas = [], []
for a in flat_args:
if isinstance(a, torch.Tensor):
inps.append(a)
schemas.append(shard_schema)
elif isinstance(a, nn.Module) or isinstance(a, torch.optim.Optimizer):
# nn.Module or optimizer placeholder is captured by make_fx but
# never used in the graph
inps.append(torch.empty(0))
schemas.append(shard_schema)
for o in pytree.tree_flatten(named_states)[0]:
if isinstance(o, torch.Tensor):
inps.append(o)
schemas.append(replicate_schema)
else:
inps.append(torch.empty(0))
schemas.append(replicate_schema)
for p in pytree.tree_flatten(params_and_buffers)[0]:
assert isinstance(
p, torch.Tensor
), f"expecting Tensor but got {type(p)}"
inps.append(p)
schemas.append(replicate_schema)
return _convert_to_distributed(gm, inps, schemas, _allow_partial=False)
@contextmanager
def _rematerialize_optimizer(
opt: torch.optim.Optimizer,
named_states: Dict[str, Any],
params: Dict[str, nn.Parameter],
):
assert opt is not None
# update opt.state with proxy tensors
orig_states: Dict[str, Any] = copy(opt.state)
for n in named_states:
# opt.state's key type is string, but optimizer uses Parameter as keys
opt.state[params[n]] = named_states[n] # type: ignore[index]
# FIXME: support multiple parameter groups
param_group = opt.param_groups[0]
orig_params = param_group["params"]
# FIXME(@mrshenli): exclude buffers
param_group["params"] = params.values()
try:
yield
finally:
param_group["params"] = orig_params
opt.state.update(orig_states)
aten = torch.ops.aten # pyre-ignore
@contextmanager
def _enable_compile():
# The return value of torch._utils.is_compiling changes optimizer behavior.
# We need that function to return True to include optimizer in the graph.
# See: https://github.com/pytorch/pytorch/blob/a524123c91ab399c9dd6882c1189596dd77e7734/torch/optim/optimizer.py#L41
def f_true():
return True
orig_is_compiling_code = torch._utils.is_compiling.__code__
torch._utils.is_compiling.__code__ = f_true.__code__
try:
yield
finally:
torch._utils.is_compiling.__code__ = orig_is_compiling_code
@dataclass
class _CompiledResult:
gm: fx.GraphModule
mod: nn.Module
opt: Optional[torch.optim.Optimizer]
named_states: Dict[str, torch.Tensor]
params_and_buffers: Dict[str, torch.Tensor]
def _compile(
func: Callable,
module_override: Optional[Dict[Type[Any], Override]],
*args: Any,
**kwargs: Any,
) -> _CompiledResult:
# 1. Extract nn.Module and Optimizer from args and kwargs
# FIXME(@mrshenli): support multiple nn.Module instances
# FIXME(@mrshenli): support multiple Optiimzer instances
# FIXME(@mrshenli): need to broadcast model to sync parameters
mod, opt = None, None
for arg in pytree.tree_flatten(list(args) + list(kwargs.values()))[0]:
if isinstance(arg, nn.Module):
assert mod is None, "Only support single nn.Module for now"
mod = arg
if isinstance(arg, torch.optim.Optimizer):
assert opt is None, "Only support single Optimizer for now"
opt = arg
assert (
mod is not None
), "Couldn't find nn.Module instances from the arguments."
# 2. Override target submodules (e.g., MoE) with dummy replacements
if module_override:
accessor = NamedMemberAccessor(mod)
for typ, override in module_override.items():
for name, submodule in mod.named_modules():
if isinstance(submodule, typ):
accessor.swap_submodule(
name, override.replacement(submodule)
)
# 3. Trace statelss version of the train_step
params_and_buffers: Dict[str, Union[torch.Tensor, nn.Parameter]] = {
**dict(mod.named_parameters(remove_duplicate=False)),
**dict(mod.named_buffers(remove_duplicate=False)),
}
named_states = {}
if opt is not None:
opt_states, spec = pytree.tree_flatten(dict(opt.state))
# Pass named_states instead of opt.state to stateless_func, because
# the later uses nn.Parameter as key. During tracing, we need to
# make sure optimizers can find the states using proxy tensors.
for n, p in params_and_buffers.items():
if p in opt.state:
# opt.state's key type is string, but optimizer uses
# Parameter as keys
named_states[n] = opt.state[p] # type: ignore[index]
# Lift states and parameters as function arguments so that make_fx
# can trace operations applied to them.
def stateless_func(func, args, kwargs, named_states, params_and_buffers):
with stateless._reparametrize_module(
cast(nn.Module, mod), params_and_buffers
), _rematerialize_optimizer(
opt, named_states, params_and_buffers
) if opt else nullcontext():
ret = func(*args, **kwargs)
# make sure updated parameters are returned
return ret, list(mod.parameters()) # type: ignore[union-attr]
# FIXME: Using symbolic tracing to work around. Otherwise it hits
# shape mismatch error, as we use local inputs to trace local graph
# and use DTensor to expand operators, where DTensor's shape is the
# global shape.
with _enable_compile():
# FIXME(@mrshenli): functionalization does not work for our use
# case yet. Use explicit decompositions for foreach ops.
# Remove this when the following issue is addressed.
# Issue: https://github.com/pytorch/pytorch/issues/97852
gm = make_fx(
partial(stateless_func, func),
tracing_mode="symbolic",
decomposition_table={aten._foreach_add_.List: _foreach_add_decomp},
_allow_non_fake_inputs=False,
)(args, kwargs, named_states, params_and_buffers)
# 4. Use DTensor to insert collectives
gm, name_to_spec = _dtensor_expand(
gm, args, kwargs, named_states, params_and_buffers
)
# 5. Replace previously inserted dummy ones with real graphs.
if module_override:
for _, override in module_override.items():
gm = override.transform(gm, name_to_spec)
return _CompiledResult(gm, mod, opt, named_states, params_and_buffers)
def _foreach_add_decomp(self, other, alpha=1):
self_updated = aten._foreach_add.List(self, other, alpha=alpha)
for s, s_u in zip(self, self_updated):
s.copy_(s_u)
# Note that the Python convention of __dict__ requires the key to be str.
# TODO: ensure the key is unique.
COMPILED_OBJECT_KEY = "_compiled_obj"
def compile(
module_override: Optional[Dict[Type[Any], Override]] = None,
gm_transformation: Optional[
Callable[[fx.GraphModule], fx.GraphModule]
] = None,
):
r"""
Compile and optimize a callable, which can be a train step within a training
loop. This method will extract :class:`nn.Module` and :class:`torch.optim.Optimizer`
instances from the input arguments and trace operations applied to their
parameters and states.
Args:
module_override (Optional[Dict[Type[Any], Override]]): a dictionary maps
from target :class:`nn.Module` types to :class:`Override` objects.
The :class:`Override` objects provide :class:`nn.Module` replacements
during tracing and a graph transformation function after tracing.
(Default: ``None``)
gm_transformation (Optional[Callable[fx.GraphModule, fx.GraphModule]]):
a callback that will be called after the original callable is
compiled and distributed (usually after the first iteration) to
transform the compiled GraphModule into a new optimized one.
"""
def inner(func: Callable):
@wraps(func)
def wrapper(*args, **kwargs):
first_iter = False
# Put the COMPILED_OBJECT_KEY in ``wrapper`` instead of ``func`` as
# ``wrapper`` is the one that users will get.
compiled_obj = wrapper.__dict__.get(COMPILED_OBJECT_KEY, None)
if compiled_obj is None:
first_iter = True
compiled_obj = _compile(func, module_override, *args, **kwargs)
wrapper.__dict__[COMPILED_OBJECT_KEY] = compiled_obj
with torch.no_grad():
# N.B.: we don't need autograd as backward has already been
# captured in the graph.
output = compiled_obj.gm(
args,
kwargs,
compiled_obj.named_states,
compiled_obj.params_and_buffers,
)[0]
if first_iter and gm_transformation:
# TODO: SPMD should provid a default and configurable
# transformation.
compiled_obj.gm = gm_transformation(compiled_obj.gm)
return output
return wrapper
return inner