pytorch/torch/nn/quantized/modules/batchnorm.py
Gao, Xiang 37658b144b Remove useless py2 compatibility import __future__, part 1 (#43808)
Summary:
To avoid conflicts, this PR does not remove all imports. More are coming in further PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43808

Reviewed By: wanchaol

Differential Revision: D23436675

Pulled By: ailzhang

fbshipit-source-id: ccc21a1955c244f0804277e9e47e54bfd23455cd
2020-09-02 19:15:11 -07:00

73 lines
2.6 KiB
Python

import torch
import torch.nn.quantized.functional
import torch.nn.intrinsic as nni
class BatchNorm2d(torch.nn.BatchNorm2d):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(BatchNorm2d, self).__init__(num_features)
self.eps = eps
self.scale = 1.0
self.zero_point = 0
def forward(self, input):
return torch.ops.quantized.batch_norm2d(input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedBatchNorm2d'
@classmethod
def from_float(cls, mod):
if type(mod) == nni.BNReLU2d:
activation_post_process = mod[1].activation_post_process
mod = mod[0]
else:
activation_post_process = mod.activation_post_process
scale, zero_point = activation_post_process.calculate_qparams()
new_mod = cls(mod.num_features, mod.eps)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
new_mod.running_mean = mod.running_mean
new_mod.running_var = mod.running_var
new_mod.scale = float(scale)
new_mod.zero_point = int(zero_point)
return new_mod
class BatchNorm3d(torch.nn.BatchNorm3d):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(BatchNorm3d, self).__init__(num_features)
self.eps = eps
self.scale = 1.0
self.zero_point = 0
def forward(self, input):
return torch.ops.quantized.batch_norm3d(input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedBatchNorm3d'
@classmethod
def from_float(cls, mod):
if type(mod) == nni.BNReLU3d:
activation_post_process = mod[1].activation_post_process
mod = mod[0]
else:
activation_post_process = mod.activation_post_process
scale, zero_point = activation_post_process.calculate_qparams()
new_mod = cls(mod.num_features, mod.eps)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
new_mod.running_mean = mod.running_mean
new_mod.running_var = mod.running_var
new_mod.scale = float(scale)
new_mod.zero_point = int(zero_point)
return new_mod