pytorch/torch/ao/nn/sparse/quantized/utils.py
Zafar Takhirov 375687839e [sparsity] Moving the sparsity python files to OSS (#56617)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56617

This migrates the sparsity to the open source

Test Plan: `buck test mode/opt //caffe2/test:ao`

Reviewed By: raghuramank100

Differential Revision: D27812207

fbshipit-source-id: cc87d9d2b486269901a4ad9b483615741a1cd712
2021-04-22 14:07:31 -07:00

39 lines
1.7 KiB
Python

import threading
def is_valid_linear_block_sparse_pattern(row_block_size, col_block_size):
return (row_block_size == 1 and col_block_size == 4) or \
(row_block_size == 8 and col_block_size == 1)
# This is a stop-gap measure as current flow does not allow module
# specific block sparse pattern.
# Infact there is no way to convey sparse pattern via module config
# of quantization flow. Thus using the global context to convey
# sparsity pattern.
# Once the flow supports it, this should be removed.
class QNNPACKLinearBlockSparsePattern:
rlock = threading.RLock()
row_block_size = 1
col_block_size = 4
prev_row_block_size = 1
prev_col_block_size = 4
def __init__(self, row_block_size=1, col_block_size=4):
assert(is_valid_linear_block_sparse_pattern(row_block_size, col_block_size))
QNNPACKLinearBlockSparsePattern.rlock.acquire()
QNNPACKLinearBlockSparsePattern.prev_row_block_size = QNNPACKLinearBlockSparsePattern.row_block_size
QNNPACKLinearBlockSparsePattern.prev_col_block_size = QNNPACKLinearBlockSparsePattern.col_block_size
QNNPACKLinearBlockSparsePattern.row_block_size = row_block_size
QNNPACKLinearBlockSparsePattern.col_block_size = col_block_size
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, backtrace):
QNNPACKLinearBlockSparsePattern.row_block_size = QNNPACKLinearBlockSparsePattern.prev_row_block_size
QNNPACKLinearBlockSparsePattern.col_block_size = QNNPACKLinearBlockSparsePattern.prev_col_block_size
QNNPACKLinearBlockSparsePattern.rlock.release()
@staticmethod
def block_size():
return QNNPACKLinearBlockSparsePattern.row_block_size, QNNPACKLinearBlockSparsePattern.col_block_size