mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: By default, performance tests (speedup experiments) will run the baseline and test backend alternately. However, this does not work for the torchao backend, which will change the model in-place, therefore the baseline run will also run with torchao backend since the model has already been quantized. Add a new experiment "latency_experiment" to run performance tests non-alternately (first run baseline for a few iterations, then run the test backend). other changes: need to add torch.compiler.cudagraph_mark_step_begin() to avoid the slowdown from # Unable to hit fast path of CUDAGraphs because of pending, uninvoked backwards also updated the torchao APIs to the current versions X-link: https://github.com/pytorch/benchmark/pull/2394 Test Plan: python run_benchmark.py torchao --only AlbertForMaskedLM --quantization noquant --performance --inference --bfloat16 --inductor-compile-mode max-autotune python run_benchmark.py torchao --only BartForCausalLM --quantization noquant --performance --inference --bfloat16 --inductor-compile-mode max-autotune python run_benchmark.py torchao --only timm_efficientnet --quantization noquant --performance --inference --bfloat16 --inductor-compile-mode max-autotune (should all be ~1.0 0.997x 1.006x 0.994x Reviewed By: xuzhao9 Differential Revision: D60252821 Pulled By: HDCharles Pull Request resolved: https://github.com/pytorch/pytorch/pull/131935 Approved by: https://github.com/xuzhao9
58 lines
2.2 KiB
Python
58 lines
2.2 KiB
Python
from typing import Any, Callable
|
|
|
|
import torch
|
|
|
|
|
|
def setup_baseline():
|
|
from torchao.quantization.utils import recommended_inductor_config_setter
|
|
|
|
recommended_inductor_config_setter()
|
|
torch._dynamo.config.automatic_dynamic_shapes = False
|
|
torch._dynamo.config.cache_size_limit = 10000
|
|
|
|
|
|
def torchao_optimize_ctx(quantization: str):
|
|
from torchao.quantization.quant_api import (
|
|
autoquant,
|
|
int4_weight_only,
|
|
int8_dynamic_activation_int8_weight,
|
|
int8_weight_only,
|
|
quantize_,
|
|
)
|
|
from torchao.utils import unwrap_tensor_subclass
|
|
|
|
def inner(model_iter_fn: Callable):
|
|
def _torchao_apply(module: torch.nn.Module, example_inputs: Any):
|
|
if getattr(module, "_quantized", None) is None:
|
|
if quantization == "int8dynamic":
|
|
quantize_(
|
|
module,
|
|
int8_dynamic_activation_int8_weight(),
|
|
set_inductor_config=False,
|
|
)
|
|
elif quantization == "int8weightonly":
|
|
quantize_(module, int8_weight_only(), set_inductor_config=False)
|
|
elif quantization == "int4weightonly":
|
|
quantize_(module, int4_weight_only(), set_inductor_config=False)
|
|
if quantization == "autoquant":
|
|
autoquant(module, error_on_unseen=False, set_inductor_config=False)
|
|
if isinstance(example_inputs, dict):
|
|
module(**example_inputs)
|
|
else:
|
|
module(*example_inputs)
|
|
from torchao.quantization.autoquant import AUTOQUANT_CACHE
|
|
|
|
if len(AUTOQUANT_CACHE) == 0:
|
|
raise Exception( # noqa: TRY002`
|
|
"NotAutoquantizable"
|
|
f"Found no autoquantizable layers in model {type(module)}, stopping autoquantized run"
|
|
)
|
|
else:
|
|
unwrap_tensor_subclass(module)
|
|
setattr(module, "_quantized", True) # noqa: B010
|
|
model_iter_fn(module, example_inputs)
|
|
|
|
return _torchao_apply
|
|
|
|
return inner
|