mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
381 lines
12 KiB
C++
381 lines
12 KiB
C++
#include "torch/csrc/autograd/python_variable_indexing.h"
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/THP_export.h"
|
|
#include "torch/csrc/autograd/function.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/utils/python_compat.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/tensor_new.h"
|
|
#include "torch/csrc/utils/tensor_conversion_dispatch.h"
|
|
|
|
#include <ATen/DeviceGuard.h>
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <ATen/TensorOptions.h>
|
|
|
|
#include <vector>
|
|
#include <tuple>
|
|
|
|
using namespace at;
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
Py_ssize_t THPVariable_length(PyObject* self) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.dim() == 0) {
|
|
return 0;
|
|
}
|
|
return (Py_ssize_t)self_.size(0);
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
|
|
// We allow indexing by integers, slices, ellipsis, None, Variables,
|
|
// and tuples of those types. We also handle bools as if they were a
|
|
// Variable[ByteTensor].
|
|
|
|
static int64_t count_specified_dimensions(PyObject* index) {
|
|
// Count the number of indexed dimensions (everything but ellipsis and None)
|
|
int64_t count = 0;
|
|
auto size = PyTuple_GET_SIZE(index);
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPVariable_Check(obj)) {
|
|
auto& var = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
if (var.type().scalarType() == kByte) {
|
|
count += var.dim();
|
|
} else {
|
|
count++;
|
|
}
|
|
} else if (obj != Py_None && obj != Py_Ellipsis) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void invalid_index(PyObject* obj) {
|
|
throw IndexError(
|
|
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
|
|
"Variables are valid indices (got %s)", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
static Variable applySlice(const Variable& self, int64_t dim, PyObject* slice, bool ensure_view=false) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
auto length = self.size(dim);
|
|
if (!THPUtils_parseSlice(slice, length, &start, &stop, &step, &slicelength)) {
|
|
throw python_error();
|
|
}
|
|
if (step == 0) {
|
|
throw ValueError("step cannot be zero");
|
|
}
|
|
if (step < 0) {
|
|
// TODO: implement negative step
|
|
throw ValueError("negative step not yet supported");
|
|
}
|
|
if (!ensure_view && start == 0 && stop == length && step == 1) {
|
|
return self;
|
|
}
|
|
return self.slice(dim, start, stop, step);
|
|
}
|
|
|
|
static Variable applySelect(const Variable& self, int64_t dim, int64_t index) {
|
|
if (index == 0 && dim == 0 && self.dim() == 0) {
|
|
// Deprecated support for indexing 0-dim tensors as if they were 1-dim.
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. "
|
|
"Use tensor.item() to convert a 0-dim tensor to a Python number", 1);
|
|
return at::alias(self);
|
|
}
|
|
int64_t size = self.size(dim);
|
|
if (index < -size || index >= size) {
|
|
throw IndexError("index %lld is out of bounds for dimension %lld with size %lld",
|
|
index, dim, size);
|
|
}
|
|
if (index < 0) {
|
|
index += size;
|
|
}
|
|
return self.select(dim, index);
|
|
}
|
|
|
|
static Variable sequenceToVariable(const Type& type, PyObject* seq) {
|
|
auto& idx_type = type.toScalarType(kLong);
|
|
return torch::utils::legacy_new_from_data(idx_type, at::nullopt, seq);
|
|
}
|
|
|
|
static Variable valueToTensor(const Type & type, PyObject* value) {
|
|
if (THPVariable_Check(value)) {
|
|
return reinterpret_cast<THPVariable*>(value)->cdata;
|
|
}
|
|
if (THPUtils_checkLong(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackLong(value)));
|
|
}
|
|
if (PyFloat_Check(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackDouble(value)));
|
|
}
|
|
throw TypeError("can't assign a %s to a %s", Py_TYPE(value)->tp_name, type.toString());
|
|
}
|
|
|
|
static Variable applySlicing(const Variable& self, PyObject* index, variable_list& outIndices) {
|
|
int64_t size = PyTuple_GET_SIZE(index);
|
|
int64_t dim = 0;
|
|
int64_t specified_dims = count_specified_dimensions(index);
|
|
|
|
auto handle_var = [&](const Variable& var) {
|
|
// TODO: check scalarType
|
|
outIndices.resize(dim + 1);
|
|
outIndices[dim] = var;
|
|
dim++;
|
|
};
|
|
|
|
if (specified_dims > self.dim()) {
|
|
throw IndexError("too many indices for tensor of dimension %d", (int)self.dim());
|
|
}
|
|
|
|
Variable result = self;
|
|
for (int64_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPUtils_checkLong(obj)) {
|
|
result = applySelect(result, dim, THPUtils_unpackLong(obj));
|
|
} else if (PySlice_Check(obj)) {
|
|
result = applySlice(result, dim, obj);
|
|
if (result.numel() == 0) {
|
|
// TODO: currently we don't have support for 0-sized dims, so slicing a dim
|
|
// to size 0 will return a size 0 tensor. for now, just shortcircuit slicing
|
|
// and return that size 0 tensor.
|
|
return result;
|
|
}
|
|
dim++;
|
|
} else if (obj == Py_Ellipsis) {
|
|
dim += self.dim() - specified_dims;
|
|
} else if (obj == Py_None) {
|
|
result = result.unsqueeze(dim);
|
|
dim++;
|
|
} else if (THPVariable_Check(obj)) {
|
|
auto& var = THPVariable_Unpack(obj);
|
|
auto scalar_type = var.type().scalarType();
|
|
if (var.dim() == 0 && at::isIntegralType(scalar_type) && scalar_type != at::kByte) {
|
|
result = applySelect(result, dim, THPUtils_unpackLong(obj));
|
|
} else {
|
|
handle_var(var);
|
|
}
|
|
} else if (PySequence_Check(obj)) {
|
|
handle_var(sequenceToVariable(self.type(), obj));
|
|
} else {
|
|
auto index = THPObjectPtr(PyNumber_Index(obj));
|
|
if (!index) {
|
|
PyErr_Clear();
|
|
invalid_index(obj);
|
|
}
|
|
result = applySelect(result, dim, THPUtils_unpackLong(index));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<Tensor> typeConvertIndices(const Variable& self, const variable_list& indices) {
|
|
std::vector<Tensor> converted_inds(indices.size());
|
|
int32_t device = self.is_cuda() ? self.get_device() : -1;
|
|
for (size_t i = 0; i < indices.size(); ++i) {
|
|
const auto &ind = indices[i];
|
|
if (ind.defined()) {
|
|
auto& new_type = ind.type().toBackend(self.type().backend());
|
|
converted_inds[i] = torch::utils::dispatch_type_conversion(ind, new_type, device, false);
|
|
} else {
|
|
converted_inds[i] = indices[i];
|
|
}
|
|
}
|
|
return converted_inds;
|
|
}
|
|
|
|
static Variable dispatch_index(const Variable& self, const variable_list& indices) {
|
|
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
|
|
AutoNoGIL no_gil;
|
|
DeviceGuard device_guard(self);
|
|
return self.index(converted_indices);
|
|
}
|
|
|
|
static Variable dispatch_index_put_(Variable& self, const variable_list& indices, const Variable& value) {
|
|
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
|
|
AutoNoGIL no_gil;
|
|
DeviceGuard device_guard(self);
|
|
return self.index_put_(converted_indices, value);
|
|
}
|
|
|
|
static bool treatSequenceAsTuple(PyObject* index) {
|
|
if (PyTuple_Check(index)) {
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(index)) {
|
|
return false;
|
|
}
|
|
// This uses a heuristics from NumPy for determining whether to treat
|
|
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
|
|
//
|
|
// "At this point, we're left with a non-tuple, non-array, sequence:
|
|
// typically, a list. We use some somewhat-arbitrary heuristics from here
|
|
// onwards to decided whether to treat that list as a single index, or a
|
|
// list of indices. Backwards compatibility only takes effect for short
|
|
// sequences - otherwise we treat it like any other scalar."
|
|
auto n = PySequence_Size(index);
|
|
if (n < 0) {
|
|
// Negative size indicates a Python error in the PySequence_Size call.
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (n >= 32) {
|
|
return false;
|
|
}
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
|
|
if (!obj.get()) {
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) || PySlice_Check(obj.get())) {
|
|
return true;
|
|
}
|
|
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static THPObjectPtr wrapTuple(PyObject* index) {
|
|
THPObjectPtr res;
|
|
if (treatSequenceAsTuple(index)) {
|
|
res = PySequence_Tuple(index);
|
|
} else {
|
|
res = PyTuple_Pack(1, index);
|
|
}
|
|
if (!res) throw python_error();
|
|
return res;
|
|
}
|
|
|
|
static bool isSingleBoolScalar(const variable_list& vars) {
|
|
return vars.size() == 1 && vars[0].type().scalarType() == ScalarType::Byte && vars[0].dim() == 0;
|
|
}
|
|
|
|
static PyObject* applyBoolGetitem(const Variable& self, bool index) {
|
|
if (index) {
|
|
return wrap(self.type().copy(self.unsqueeze(0)));
|
|
} else {
|
|
return wrap(at::empty({0}, at::TensorOptions(self)));
|
|
}
|
|
}
|
|
|
|
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
DeviceGuard device_guard(self_);
|
|
|
|
// handle simple types: integers, slices, ellipsis
|
|
if (index == Py_None) {
|
|
return wrap(self_.unsqueeze(0));
|
|
} else if (index == Py_Ellipsis) {
|
|
return wrap(at::alias(self_));
|
|
} else if (THPUtils_checkLong(index)) {
|
|
return wrap(applySelect(self_, 0, THPUtils_unpackLong(index)));
|
|
} else if (PyBool_Check(index)) {
|
|
return applyBoolGetitem(self_, index == Py_True);
|
|
} else if (PySlice_Check(index)) {
|
|
return wrap(applySlice(self_, 0, index, true));
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
if (sliced.is_same(self_)) {
|
|
// ensure we return a shallow copy for things like x[...]
|
|
sliced = at::alias(sliced);
|
|
}
|
|
return wrap(sliced);
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
return applyBoolGetitem(self_, variableIndices[0].toCByte());
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
return wrap(dispatch_index(sliced, variableIndices));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static void copy_to(Variable dst, const Variable& src) {
|
|
Tensor b_src;
|
|
// To match numpy semantics:
|
|
// As a special case for backwards compatibility,
|
|
// strip away unit dimensions from the left of 'src'
|
|
auto src_sizes = src.sizes();
|
|
size_t first_nonzero_src = src_sizes.size();
|
|
for (size_t i = 0; i < src_sizes.size(); ++i) {
|
|
if (src_sizes[i] != 1) {
|
|
first_nonzero_src = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
src_sizes = src_sizes.slice(first_nonzero_src);
|
|
std::tie(b_src) = expand_inplace(dst, src.view(src_sizes), "setitem");
|
|
dst.copy_(b_src);
|
|
}
|
|
|
|
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
DeviceGuard device_guard(self_);
|
|
auto value = valueToTensor(self_.type(), py_value);
|
|
|
|
// handle simple types: integers, slices, ellipsis, bool
|
|
if (index == Py_False) {
|
|
// do nothing for false (technically we should check the size, but we don't have
|
|
// real 0-sized shapes.
|
|
return 0;
|
|
} else if (index == Py_Ellipsis) {
|
|
copy_to(self_, value);
|
|
return 0;
|
|
} else if (index == Py_None || index == Py_True) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
return 0;
|
|
} else if (THPUtils_checkLong(index)) {
|
|
copy_to(applySelect(self_, 0, THPUtils_unpackLong(index)), value);
|
|
return 0;
|
|
} else if (PySlice_Check(index)) {
|
|
copy_to(applySlice(self_, 0, index), value);
|
|
return 0;
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
copy_to(sliced, value);
|
|
return 0;
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
if (variableIndices[0].toCByte()) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
dispatch_index_put_(sliced, variableIndices, value);
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
}} // namespace torch::autograd
|