pytorch/test/test_sparse.py
Peter Goldsborough 372d1d6735
Create ATen tensors via TensorOptions (#7869)
* Created TensorOptions

Storing the type in TensorOptions to solve the Variable problem

Created convenience creation functions for TensorOptions and added tests

Converted zeros to TensorOptions

Converted rand to TensorOptions

Fix codegen for TensorOptions and multiple arguments

Put TensorOptions convenience functions into torch namespace too

All factory functions except *_like support TensorOptions

Integrated with recent JIT changes

Support *_like functions

Fix in place modification

Some cleanups and fixes

Support sparse_coo_tensor

Fix bug in Type.cpp

Fix .empty calls in C++ API

Fix bug in Type.cpp

Trying to fix device placement

Make AutoGPU CPU compatible

Remove some auto_gpu.h uses

Fixing some headers

Fix some remaining CUDA/AutoGPU issues

Fix some AutoGPU uses

Fixes to dispatch_tensor_conversion

Reset version of new variables to zero

Implemented parsing device strings

Random fixes to tests

Self review cleanups

flake8

Undo changes to variable.{h,cpp} because they fail on gcc7.2

Add [cuda] tag to tensor_options_cuda.cpp

Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks

Fix linker error in AutoGPU.cpp

Fix bad merge conflict in native_functions.yaml

Fixed caffe2/contrib/aten

Fix new window functions added to TensorFactories.cpp

* Removed torch::TensorOptions

Added code to generate wrapper functions for factory methods

Add implicit constructor from Backend to TensorOptions

Remove Var() from C++ API and use torch:: functions

Use torch:: functions more subtly in C++ API

Make AutoGPU::set_device more exception safe

Check status directly in DynamicCUDAHooksInterface

Rename AutoGPU to DeviceGuard

Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad

remove python_default_init: self.type()

Add back original factory functions, but with deprecation warnings

Disable DeviceGuard for a couple functions in ATen

Remove print statement

Fix DeviceGuard construction from undefined tensor

Fixing CUDA device compiler issues

Moved as many methods as possible into header files

Dont generate python functions for deprecated factories

Remove merge conflict artefact

Fix tensor_options_cuda.cpp

Fix set_requires_grad not being checked

Fix tensor_new.h

TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac

Fix bug in DeviceGuard.h

Missing includes

TEMPORARILY moving a few more methods into .cpp to see if it fixes windows

Fixing linker errors

* Fix up SummaryOps to use new factories

Undo device agnostic behavior of DeviceGuard

Use -1 instead of optional for default device index

Also move DeviceGuard methods into header

Fixes around device index after optional -> int32_t switch

Fix use of DeviceGuard in new_with_tensor_copy

Fix tensor_options.cpp

* Fix Type::copy(

* Remove test_non_float_params from ONNX tests

* Set requires_grad=False in ONNX tests that use ints

* Put layout/dtype/device on Tensor

* Post merge fixes

* Change behavior of DeviceGuard to match AutoGPU

* Fix C++ API integration tests

* Fix flip functions
2018-06-16 00:40:35 -07:00

1040 lines
39 KiB
Python

import torch
from torch import sparse
import itertools
import random
import unittest
from common import TestCase, run_tests
from common_cuda import TEST_CUDA
from test_torch import TestTorch
from numbers import Number
def cpu_only(inner):
def outer(self, *args, **kwargs):
if self.is_cuda:
raise unittest.SkipTest("Test is CPU-only")
inner(self, *args, **kwargs)
return outer
def cuda_only(inner):
def outer(self, *args, **kwargs):
if not self.is_cuda:
raise unittest.SkipTest("Test is GPU-only")
inner(self, *args, **kwargs)
return outer
class TestSparse(TestCase):
def setUp(self):
# These parameters control the various ways we can run the test.
# We will subclass and override this method to implement CUDA
# tests
self.is_cuda = False
self.is_uncoalesced = False
self.IndexTensor = torch.LongTensor
self.ValueTensor = torch.DoubleTensor
self.SparseTensor = torch.sparse.DoubleTensor
super(TestSparse, self).setUp()
def _gen_sparse(self, d, nnz, with_size):
# TODO: Consider implementing this in the CUDA case by directly
# performing the operations on the GPU. You won't be able to
# use torch.rand/torch.randn in this case because they are
# CPU-only. If you do this, you can remove the is_cuda branch
# at the end.
#
# If you do this, be sure to update assert_uncoalesced too
if isinstance(with_size, Number):
with_size = [with_size] * d
if self.is_uncoalesced:
# We want to generate a tensor with a lot of uncoalesced
# entries to stress test whether or not we handle this
# (subtle) case correctly
v_size = [nnz * 2] + list(with_size[d:])
v = torch.randn(*v_size)
r = torch.rand(d, nnz)
# Repeat the indexes, so every position shows up twice
i = torch.cat([r, r], dim=1) * \
torch.Tensor(with_size[:d]).repeat(nnz * 2, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
self.assert_uncoalesced(x)
else:
# Generate a sparse tensor with d sparse dimensions; the
# rest the dimensions with_size[d:] are dense.
v_size = [nnz] + list(with_size[d:])
v = torch.randn(*v_size)
i = torch.rand(d, nnz) * \
torch.Tensor(with_size[:d]).repeat(nnz, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
if self.is_cuda:
return x.cuda(), i.cuda(), v.cuda()
else:
return x, i.clone(), v.clone()
def assert_uncoalesced(self, x):
"""
Test if a CPU tensor is uncoalesced. This is used to ensure
correctness of the uncoalesced tensor generation algorithm.
"""
assert not x.is_coalesced()
# Strategy: construct a new sparse tensor with the raw value
# field overwritten to a tensor of ones, coalesce it, and then
# check if any value entries are > 1 (which indicates that the
# original was uncoalesced.)
i = x._indices().clone()
v = x._values().clone().fill_(1)
y = torch.sparse.DoubleTensor(i, v, x.size())
z = self.safeCoalesce(y)
assert (z._values() > 1).sum() > 0
def randn(self, *args, **kwargs):
"""
Variant of torch.randn that also works in the TEST_CUDA case.
"""
# TODO: Put this in torch.cuda.randn
return self.ValueTensor(*args, **kwargs).normal_()
def test_basic(self):
x, i, v = self._gen_sparse(3, 10, 100)
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
x, i, v = self._gen_sparse(3, 10, [100, 100, 100])
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
self.assertEqual(x.ndimension(), 3)
self.assertEqual(self.safeCoalesce(x)._nnz(), 10)
for i in range(3):
self.assertEqual(x.size(i), 100)
# Make sure that coalesce handles duplicate indices correctly
i = self.IndexTensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]])
v = self.ValueTensor([[idx**2, idx] for idx in range(i.size(1))])
x = self.SparseTensor(i, v, torch.Size([10, 2]))
self.assertEqual(self.safeCoalesce(x)._nnz(), 9)
# Make sure we can access empty indices / values
x = self.SparseTensor()
self.assertEqual(x._indices().numel(), 0)
self.assertEqual(x._values().numel(), 0)
def test_ctor_size_checks(self):
indices = self.IndexTensor([
[0, 0, 0],
[0, 3, 0],
[0, 0, 0],
[0, 0, 0],
])
values = self.ValueTensor([2, 1, 3, 4])
# indices inconsistent with size
self.assertRaises(
RuntimeError,
lambda: self.SparseTensor(indices, values, torch.Size([2, 1, 1])))
# values inconsistent with size
values = self.ValueTensor([
[2, 1, 2, 1],
[1, 0, 5, 2],
])
self.assertRaises(
RuntimeError,
lambda: self.SparseTensor(indices, values, torch.Size([2, 4, 2, 1])))
def test_to_dense(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
v = self.ValueTensor([2, 1, 3, 4])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
res = self.ValueTensor([
[[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 4]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def test_shared(self):
i = self.IndexTensor([[2]])
v = self.ValueTensor([5])
x = self.SparseTensor(i, v, torch.Size([3]))
v[0] = 6
self.assertEqual(self.ValueTensor([0, 0, 6]), self.safeToDense(x))
i[0][0] = 0
self.assertEqual(self.ValueTensor([6, 0, 0]), self.safeToDense(x))
def test_to_dense_hybrid(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
])
v = self.ValueTensor([[2, 3], [1, 2], [3, 4], [4, 5]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 2]))
res = self.ValueTensor([
[[2, 3],
[0, 0],
[0, 0],
[0, 0]],
[[1, 2],
[0, 0],
[0, 0],
[0, 0]],
[[3, 4],
[0, 0],
[0, 0],
[4, 5]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def test_contig(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
x = self.SparseTensor(i, v, torch.Size([100, 100]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([2, 1, 3, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([6, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_contig_hybrid(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
])
x = self.SparseTensor(i, v, torch.Size([100, 100, 2]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([[6, 4, 5], [4, 3, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_clone(self):
x, _, _ = self._gen_sparse(4, 20, 5)
if self.is_uncoalesced:
self.assertFalse(x.is_coalesced())
y = x.clone()
self.assertFalse(y.is_coalesced())
x = x.coalesce()
self.assertTrue(x.is_coalesced())
y = x.clone()
self.assertTrue(y.is_coalesced())
@cuda_only
def test_cuda_empty(self):
x = torch.sparse.FloatTensor(2, 3, 4)
y = x.cuda(0)
self.assertEqual(x._sparseDims(), y._sparseDims())
self.assertEqual(x._denseDims(), y._denseDims())
x = y.cpu()
self.assertEqual(y._sparseDims(), x._sparseDims())
self.assertEqual(y._denseDims(), x._denseDims())
def test_transpose(self):
x = self._gen_sparse(4, 20, 5)[0]
y = self.safeToDense(x)
for i, j in itertools.combinations(range(4), 2):
x = x.transpose_(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
x = x.transpose(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
def test_transpose_coalesce_invariant(self):
# If a sparse tensor is coalesced, its transpose should be the same
# If a sparse tensor is uncoalesed, its transpose should be the same
x_coalesced = self._gen_sparse(2, 3, 4)[0].coalesce()
x_indices = x_coalesced._indices()
x_values = x_coalesced._values()
y_uncoalesced = self.SparseTensor(
torch.cat([x_indices, x_indices], dim=1),
torch.cat([x_values, x_values]),
x_coalesced.size())
self.assertTrue(x_coalesced.is_coalesced())
self.assertFalse(y_uncoalesced.is_coalesced())
self.assertTrue(x_coalesced.transpose(0, 1).is_coalesced())
self.assertFalse(y_uncoalesced.transpose(0, 1).is_coalesced())
x_coalesced.transpose_(0, 1)
y_uncoalesced.transpose_(0, 1)
self.assertTrue(x_coalesced.is_coalesced())
self.assertFalse(y_uncoalesced.is_coalesced())
def test_t_empty(self):
x = self.SparseTensor(2, 3)
x.t_()
self.assertEqual(torch.Size([3, 2]), x.size())
self.assertEqual(0, x._indices().numel())
self.assertEqual(0, x._values().numel())
self.assertEqual(x._sparseDims(), 2)
self.assertEqual(x._denseDims(), 0)
x = self.SparseTensor(2, 3)
y = x.t()
self.assertEqual(torch.Size([3, 2]), y.size())
self.assertEqual(0, y._indices().numel())
self.assertEqual(0, y._values().numel())
self.assertEqual(x._sparseDims(), 2)
self.assertEqual(x._denseDims(), 0)
def test_add_zeros(self):
def test_shape(sparse_dims, sizes):
x, _, _ = self._gen_sparse(sparse_dims, 20, sizes)
zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device)
r1 = zeros + x
r2 = x + zeros
self.assertEqual(r1, x)
self.assertEqual(r2, x)
test_shape(1, [1])
test_shape(4, [3, 17, 19, 5])
test_shape(2, [3, 17, 19, 5])
@cpu_only
def test_mm(self):
def test_shape(di, dj, dk):
x, _, _ = self._gen_sparse(2, 20, [di, dj])
t = torch.randn(di, dk)
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.addmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, t, beta, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(10, 100, 100)
test_shape(100, 1000, 200)
test_shape(64, 10000, 300)
@cpu_only
def test_saddmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
t = self._gen_sparse(2, 20, [di, dk])[0]
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.saddmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, self.safeToDense(t), beta, self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.saddmm(t, x, y)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.smm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_dsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.dsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_hsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.hsmm(x, y)
# TODO: use self.safeToDense(), but this triggers
# https://github.com/pytorch/pytorch/issues/3170
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def _test_spadd_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x, _, _ = self._gen_sparse(len(shape_i), 10, shape)
y = self.randn(*shape)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = self.randn(*s)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
def test_spadd(self):
self._test_spadd_shape([5, 6])
self._test_spadd_shape([10, 10, 10])
self._test_spadd_shape([50, 30, 20])
self._test_spadd_shape([5, 5, 5, 5, 5, 5])
def test_spadd_hybrid(self):
self._test_spadd_shape([5, 6], [2, 3])
self._test_spadd_shape([10, 10, 10], [3])
self._test_spadd_shape([50, 30, 20], [2])
self._test_spadd_shape([5, 5, 5, 5, 5, 5], [2])
def test_norm(self):
x, _, _ = self._gen_sparse(3, 10, 100)
y = x.coalesce()
self.assertEqual(x.norm(), y._values().norm())
def _test_basic_ops_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 - x2
y2 = x1.clone()
y2.sub_(x2)
expected = self.safeToDense(x1) - self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * x2
y2 = x1.clone()
y2.mul_(x2)
expected = self.safeToDense(x1) * self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * 37.5
y2 = x1.clone()
y2.mul_(37.5)
expected = self.safeToDense(x1) * 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 / 37.5
y2 = x1.clone()
y2.div_(37.5)
expected = self.safeToDense(x1) / 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
# TODO: add back inplace support
y1 = x1 ** 2
y2 = x1.clone()
y2 = y2.pow(2)
expected = self.safeToDense(x1) ** 2
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y = x1.clone()
y.zero_()
expected = torch.zeros(x1.size())
self.assertEqual(self.safeToDense(y), expected)
self.assertFalse(x1.is_coalesced())
y = x1.coalesce()
z = x1.coalesce()
self.assertFalse(x1.is_coalesced())
self.assertTrue(y.is_coalesced())
self.assertEqual(x1, y)
# check that coalesce is out of place
y._values().add_(1)
self.assertEqual(z._values() + 1, y._values())
def test_basic_ops(self):
self._test_basic_ops_shape([5, 6])
self._test_basic_ops_shape([10, 10, 10])
self._test_basic_ops_shape([50, 30, 20])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5])
def test_basic_ops_hybrid(self):
self._test_basic_ops_shape([5, 6], [2, 3])
self._test_basic_ops_shape([10, 10, 10], [3])
self._test_basic_ops_shape([50, 30, 20], [2])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5], [2])
def _test_sparse_mask_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
def _test_sparse_mask_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([1, 2, 3, 4])
x = self.SparseTensor(i, v, torch.Size([5, 4])).coalesce()
dense = self.ValueTensor([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
])
exp_v = self.ValueTensor([7, 14, 3, 20])
res = dense._sparse_mask(x)
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4]))
self.assertEqual(res, expected)
def test_sparse_mask(self):
self._test_sparse_mask_fixed()
self._test_sparse_mask_shape([5, 6])
self._test_sparse_mask_shape([10, 10, 10])
self._test_sparse_mask_shape([50, 30, 20])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5])
def _test_zeros(self, shape, out_shape_i, out_shape_v=None):
out_shape = out_shape_i + (out_shape_v or [])
for nnz in [9, 12]:
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape)
torch.zeros(*shape, out=out)
self.assertEqual(tuple(out.size()), tuple(shape))
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
self.assertEqual(out._nnz(), 0)
self.assertEqual(out._sparseDims(), len(shape))
self.assertEqual(out._denseDims(), 0)
def test_zeros(self):
i_shapes = [2, 3, 4]
v_shapes = [3, 4, 5, 6]
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros([2, 3, 4], i_shapes[:i_dim], v_shapes[:v_dim])
def _test_zeros_like(self, template_shape_i, template_shape_v=None):
template_shape_v = template_shape_v or []
template_shape = template_shape_i + template_shape_v
for nnz in [9, 12]:
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape)
res = torch.zeros_like(t)
self.assertEqual(tuple(res.size()), tuple(template_shape))
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
self.assertEqual(res._nnz(), 0)
self.assertEqual(res._sparseDims(), len(template_shape_i))
self.assertEqual(res._denseDims(), len(template_shape_v))
def test_zeros_like(self):
i_shapes = [2, 3, 4]
v_shapes = [3, 4, 5, 6]
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros_like(i_shapes[:i_dim], v_shapes[:v_dim])
def _test_sparse_mask_hybrid_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([[1, 2], [2, 3], [3, 4], [4, 5]])
# TODO: This is also testing that, if coalesce is a no-op,
# the indices don't get permuted. I don't know if we actually
# want to give this invariant.
x = self.SparseTensor(i, v, torch.Size([5, 4, 2])).coalesce()
dense = self.ValueTensor([
[[1, 3], [2, 2], [3, 3], [4, 2]],
[[5, 7], [6, 7], [7, 9], [8, 9]],
[[9, 2], [10, 4], [11, 1], [12, 3]],
[[13, 5], [14, 1], [15, 1], [16, 6]],
[[17, 7], [18, 2], [19, 7], [20, 1]],
])
res = dense._sparse_mask(x)
exp_v = self.ValueTensor([[7, 9], [14, 1], [3, 3], [20, 1]])
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4, 2]))
self.assertEqual(res, expected)
def test_sparse_variable_methods(self):
# TODO: delete when tensor/variable are merged
from torch.autograd import Variable
i = self.IndexTensor([[0, 1, 1], [2, 0, 2]])
v = self.ValueTensor([3, 4, 5])
sparse_mat = self.SparseTensor(i, v, torch.Size([2, 3]))
sparse_var = Variable(sparse_mat)
to_test_one_arg = {
'zeros_like': lambda x: torch.zeros_like(x),
'transpose': lambda x: x.transpose(0, 1),
'transpose_': lambda x: x.transpose_(0, 1),
't': lambda x: x.t(),
't_': lambda x: x.t_(),
'div': lambda x: x.div(2),
'div_': lambda x: x.div_(2),
'pow': lambda x: x.pow(2),
'_nnz': lambda x: x._nnz(),
'is_coalesced': lambda x: x.is_coalesced(),
'coalesce': lambda x: x.coalesce(),
'to_dense': lambda x: x.to_dense(),
'_sparseDims': lambda x: x._sparseDims(),
'_denseDims': lambda x: x._denseDims(),
'norm': lambda x: x.norm(),
}
for test_name, test_fn in to_test_one_arg.items():
var1 = sparse_var.clone()
tensor1 = sparse_mat.clone()
out_var = test_fn(var1)
out_tensor = test_fn(tensor1)
if isinstance(out_tensor, int) or isinstance(out_tensor, bool):
if not isinstance(out_var, int) and not isinstance(out_var, bool):
check_var = out_var.data[0]
else:
check_var = out_var
self.assertEqual(out_var, out_tensor)
continue
# Assume output is variable / tensor
self.assertEqual(test_fn(var1).data, test_fn(tensor1),
test_name)
i = self.IndexTensor([[0, 0, 1], [1, 2, 1]])
v = self.ValueTensor([3, 3, 4])
sparse_mat2 = self.SparseTensor(i, v, torch.Size([2, 3]))
sparse_var2 = Variable(sparse_mat2)
to_test_two_arg = {
'sub': lambda x, y: x.sub(y),
'sub_': lambda x, y: x.sub_(y),
'mul': lambda x, y: x.mul(y),
'mul_': lambda x, y: x.mul_(y),
}
for test_name, test_fn in to_test_two_arg.items():
var1 = sparse_var.clone()
var2 = sparse_var2.clone()
tensor1 = sparse_mat.clone()
tensor2 = sparse_mat2.clone()
self.assertEqual(test_fn(var1, var2).data,
test_fn(tensor1, tensor2), test_name)
to_test_mixed = [
# test name, lambda expression, should_run_when_cuda
('sspaddmm', lambda sp, de: sp.sspaddmm(sp, de), False),
('sspaddmm_b', lambda sp, de: sp.sspaddmm(2, sp, de), False),
('sspaddmm_b_a', lambda sp, de: sp.sspaddmm(3, 2, sp, de), False),
('addmm', lambda sp, de: de.addmm(sp, de), True),
# TODO: This looks like a typo
('addmm_', lambda sp, de: de.addmm(sp, de), True),
('mm', lambda sp, de: torch.mm(sp, de), True),
('mm_out', lambda sp, de: torch.mm(sp, de, out=de), True),
]
i = self.IndexTensor([[0, 0, 1, 2, 2], [1, 2, 1, 0, 1]])
v = self.ValueTensor([3, 3, 4, 1, 2])
sparse_mat = self.SparseTensor(i, v, torch.Size([3, 3]))
sparse_var = Variable(sparse_mat)
dense_mat = sparse_mat.to_dense().random_(0, 5)
dense_var = Variable(dense_mat)
for test_name, test_fn, test_cuda in to_test_mixed:
if sparse_var.is_cuda and not test_cuda:
continue
sp_var = sparse_var.clone()
de_var = dense_var.clone()
sp_mat = sparse_mat.clone()
de_mat = dense_mat.clone()
self.assertEqual(test_fn(sp_var, de_var).data,
test_fn(sp_mat, de_mat), test_name)
def test_sparse_mask_hybrid(self):
self._test_sparse_mask_hybrid_fixed()
self._test_sparse_mask_shape([5, 6], [2, 3])
self._test_sparse_mask_shape([10, 10, 10], [3])
self._test_sparse_mask_shape([50, 30, 20], [2])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5], [2])
def test_sparse_add_coalesce(self):
i = self.IndexTensor([[1, 2, 1]])
v = self.ValueTensor([3, 4, 5])
x = self.SparseTensor(i, v, torch.Size([3]))
y = self.SparseTensor(i, v, torch.Size([3]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
@cuda_only
def test_storage_not_null(self):
x = torch.cuda.sparse.FloatTensor(2)
self.assertNotEqual(x.get_device(), -1)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_same_gpu(self):
i = self.IndexTensor([[2]]).cuda(1)
v = self.ValueTensor([5]).cuda(1)
x = self.SparseTensor(i, v, torch.Size([3]), device=1)
self.assertEqual(x.get_device(), 1)
self.assertEqual(x._values().get_device(), 1)
self.assertEqual(x._indices().get_device(), 1)
x = self.SparseTensor(3, device=1)
self.assertEqual(x.get_device(), 1)
self.assertEqual(x._values().get_device(), 1)
self.assertEqual(x._indices().get_device(), 1)
v = self.ValueTensor([5]).cuda(0)
self.assertRaises(RuntimeError, lambda: self.SparseTensor(i, v, torch.Size([3])))
def _test_new_device(self, size, device):
with torch.cuda.device(device):
x = torch.cuda.sparse.DoubleTensor(*size)
self.assertEqual(x.get_device(), device)
x1 = x.new()
x2 = x.new(2, 3)
self.assertEqual(x1.get_device(), device)
self.assertEqual(x2.get_device(), device)
@cuda_only
def test_new_device_single_gpu(self):
self._test_new_device((), 0)
self._test_new_device((30, 20), 0)
self._test_new_device((30, 20, 10), 0)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_new_device_multi_gpu(self):
self._test_new_device((), 1)
self._test_new_device((30, 20), 1)
self._test_new_device((30, 20, 10), 1)
def test_new(self):
x, indices, values = self._gen_sparse(3, 10, 100)
if not x.is_cuda:
# CUDA sparse tensors currently requires the size to be
# specified if nDimV > 0
self.assertEqual(x.new(indices, values), x)
self.assertEqual(x.new(indices, values, x.size()), x)
@cpu_only # not really, but we only really want to run this once
def test_factory(self):
default_size = torch.Size([1, 3])
size = torch.Size([3, 3])
for include_size in [True, False]:
for use_tensor_idx in [True, False]:
for use_tensor_val in [True, False]:
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
# have to include size with cuda sparse tensors
include_size = include_size or use_cuda
dtype = torch.float64
long_dtype = torch.int64
device = torch.device('cpu') if not use_cuda else torch.device(torch.cuda.device_count() - 1)
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
values = torch.tensor([1.], dtype=dtype) if use_tensor_val else 1.
if include_size:
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
device=device, requires_grad=True)
else:
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
device=device, requires_grad=True)
self.assertEqual(indices, sparse_tensor._indices())
self.assertEqual(values, sparse_tensor._values())
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
self.assertEqual(dtype, sparse_tensor.dtype)
if use_cuda:
self.assertEqual(device, sparse_tensor._values().device)
self.assertEqual(True, sparse_tensor.requires_grad)
def test_factory_size_check(self):
indices = self.IndexTensor([[1, 2], [0, 2]])
values = self.ValueTensor([.5, .5])
sizes = torch.Size([2, 3])
with self.assertRaisesRegex(RuntimeError, "sizes is inconsistent with indices"):
self.SparseTensor(indices, values, sizes)
indices = self.IndexTensor([[1, 2], [0, 2]])
values = self.ValueTensor([[1, 1, 1], [1, 1, 1]])
sizes = torch.Size([3, 3, 2])
with self.assertRaisesRegex(RuntimeError, "values and sizes are inconsistent"):
self.SparseTensor(indices, values, sizes)
def test_factory_empty_indices(self):
device = 'cuda' if self.is_cuda else 'cpu'
tensor = torch.sparse_coo_tensor([], [], torch.Size([]), device=device)
expected_indices = torch.tensor([], dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
@cpu_only
def test_factory_type_inference(self):
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float32))
self.assertEqual(torch.float32, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float64))
self.assertEqual(torch.float64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
self.assertEqual(torch.int64, t.dtype)
@cuda_only
def test_factory_device_type_inference(self):
# both indices/values are CUDA
shape = (1, 3)
for indices_device in ['cuda', 'cpu']:
for values_device in ['cuda', 'cpu']:
for sparse_device in ['cuda', 'cpu', None]:
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
torch.tensor([1.], device=values_device),
(1, 3), device=sparse_device)
should_be_cuda = sparse_device == 'cuda' or (sparse_device is None and values_device == 'cuda')
self.assertEqual(should_be_cuda, t.is_cuda)
@cpu_only
def test_factory_copy(self):
# both correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float64)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# only indices correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# only values correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float64)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# neither correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
@cpu_only # not really, but we only really want to run this once
def test_dtypes(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.is_available():
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
@cpu_only # not really, but we only really want to run this once
def test_empty_full(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.device_count() > 0:
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None)
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def test_is_sparse(self):
x = torch.randn(3, 3)
self.assertFalse(x.is_sparse)
x = self.SparseTensor()
self.assertTrue(x.is_sparse)
def test_resize_as(self):
def do_test(t):
y = t.new().resize_as_(t).zero_()
self.assertEqual(y.shape, t.shape)
# Check that y can be added to t. Currently, this requires that
# _sparseDims and _denseDims match.
self.assertEqual(t, t + y)
do_test(self.SparseTensor())
def test_is_nonzero(self):
self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,)).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,)).is_nonzero())
# NB: We should test "scalar" sparse tensors, but they don't actually
# work at the moment (in principle, they should)
class TestUncoalescedSparse(TestSparse):
def setUp(self):
super(TestUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaSparse(TestSparse):
def setUp(self):
super(TestCudaSparse, self).setUp()
self.is_cuda = True
self.IndexTensor = torch.cuda.LongTensor
self.ValueTensor = torch.cuda.DoubleTensor
self.SparseTensor = torch.cuda.sparse.DoubleTensor
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaUncoalescedSparse(TestCudaSparse):
def setUp(self):
super(TestCudaUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
if __name__ == '__main__':
run_tests()