mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
1040 lines
39 KiB
Python
1040 lines
39 KiB
Python
import torch
|
|
from torch import sparse
|
|
|
|
import itertools
|
|
import random
|
|
import unittest
|
|
from common import TestCase, run_tests
|
|
from common_cuda import TEST_CUDA
|
|
from test_torch import TestTorch
|
|
from numbers import Number
|
|
|
|
|
|
def cpu_only(inner):
|
|
def outer(self, *args, **kwargs):
|
|
if self.is_cuda:
|
|
raise unittest.SkipTest("Test is CPU-only")
|
|
inner(self, *args, **kwargs)
|
|
return outer
|
|
|
|
|
|
def cuda_only(inner):
|
|
def outer(self, *args, **kwargs):
|
|
if not self.is_cuda:
|
|
raise unittest.SkipTest("Test is GPU-only")
|
|
inner(self, *args, **kwargs)
|
|
return outer
|
|
|
|
|
|
class TestSparse(TestCase):
|
|
|
|
def setUp(self):
|
|
# These parameters control the various ways we can run the test.
|
|
# We will subclass and override this method to implement CUDA
|
|
# tests
|
|
self.is_cuda = False
|
|
self.is_uncoalesced = False
|
|
self.IndexTensor = torch.LongTensor
|
|
self.ValueTensor = torch.DoubleTensor
|
|
self.SparseTensor = torch.sparse.DoubleTensor
|
|
super(TestSparse, self).setUp()
|
|
|
|
def _gen_sparse(self, d, nnz, with_size):
|
|
# TODO: Consider implementing this in the CUDA case by directly
|
|
# performing the operations on the GPU. You won't be able to
|
|
# use torch.rand/torch.randn in this case because they are
|
|
# CPU-only. If you do this, you can remove the is_cuda branch
|
|
# at the end.
|
|
#
|
|
# If you do this, be sure to update assert_uncoalesced too
|
|
|
|
if isinstance(with_size, Number):
|
|
with_size = [with_size] * d
|
|
|
|
if self.is_uncoalesced:
|
|
# We want to generate a tensor with a lot of uncoalesced
|
|
# entries to stress test whether or not we handle this
|
|
# (subtle) case correctly
|
|
v_size = [nnz * 2] + list(with_size[d:])
|
|
v = torch.randn(*v_size)
|
|
r = torch.rand(d, nnz)
|
|
# Repeat the indexes, so every position shows up twice
|
|
i = torch.cat([r, r], dim=1) * \
|
|
torch.Tensor(with_size[:d]).repeat(nnz * 2, 1).transpose(0, 1)
|
|
i = i.type(torch.LongTensor)
|
|
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
|
|
self.assert_uncoalesced(x)
|
|
else:
|
|
# Generate a sparse tensor with d sparse dimensions; the
|
|
# rest the dimensions with_size[d:] are dense.
|
|
v_size = [nnz] + list(with_size[d:])
|
|
v = torch.randn(*v_size)
|
|
i = torch.rand(d, nnz) * \
|
|
torch.Tensor(with_size[:d]).repeat(nnz, 1).transpose(0, 1)
|
|
i = i.type(torch.LongTensor)
|
|
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
|
|
|
|
if self.is_cuda:
|
|
return x.cuda(), i.cuda(), v.cuda()
|
|
else:
|
|
return x, i.clone(), v.clone()
|
|
|
|
def assert_uncoalesced(self, x):
|
|
"""
|
|
Test if a CPU tensor is uncoalesced. This is used to ensure
|
|
correctness of the uncoalesced tensor generation algorithm.
|
|
"""
|
|
assert not x.is_coalesced()
|
|
# Strategy: construct a new sparse tensor with the raw value
|
|
# field overwritten to a tensor of ones, coalesce it, and then
|
|
# check if any value entries are > 1 (which indicates that the
|
|
# original was uncoalesced.)
|
|
i = x._indices().clone()
|
|
v = x._values().clone().fill_(1)
|
|
y = torch.sparse.DoubleTensor(i, v, x.size())
|
|
z = self.safeCoalesce(y)
|
|
assert (z._values() > 1).sum() > 0
|
|
|
|
def randn(self, *args, **kwargs):
|
|
"""
|
|
Variant of torch.randn that also works in the TEST_CUDA case.
|
|
"""
|
|
# TODO: Put this in torch.cuda.randn
|
|
return self.ValueTensor(*args, **kwargs).normal_()
|
|
|
|
def test_basic(self):
|
|
x, i, v = self._gen_sparse(3, 10, 100)
|
|
|
|
self.assertEqual(i, x._indices())
|
|
self.assertEqual(v, x._values())
|
|
|
|
x, i, v = self._gen_sparse(3, 10, [100, 100, 100])
|
|
self.assertEqual(i, x._indices())
|
|
self.assertEqual(v, x._values())
|
|
self.assertEqual(x.ndimension(), 3)
|
|
self.assertEqual(self.safeCoalesce(x)._nnz(), 10)
|
|
for i in range(3):
|
|
self.assertEqual(x.size(i), 100)
|
|
|
|
# Make sure that coalesce handles duplicate indices correctly
|
|
i = self.IndexTensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]])
|
|
v = self.ValueTensor([[idx**2, idx] for idx in range(i.size(1))])
|
|
x = self.SparseTensor(i, v, torch.Size([10, 2]))
|
|
self.assertEqual(self.safeCoalesce(x)._nnz(), 9)
|
|
|
|
# Make sure we can access empty indices / values
|
|
x = self.SparseTensor()
|
|
self.assertEqual(x._indices().numel(), 0)
|
|
self.assertEqual(x._values().numel(), 0)
|
|
|
|
def test_ctor_size_checks(self):
|
|
indices = self.IndexTensor([
|
|
[0, 0, 0],
|
|
[0, 3, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
])
|
|
values = self.ValueTensor([2, 1, 3, 4])
|
|
|
|
# indices inconsistent with size
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: self.SparseTensor(indices, values, torch.Size([2, 1, 1])))
|
|
|
|
# values inconsistent with size
|
|
values = self.ValueTensor([
|
|
[2, 1, 2, 1],
|
|
[1, 0, 5, 2],
|
|
])
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: self.SparseTensor(indices, values, torch.Size([2, 4, 2, 1])))
|
|
|
|
def test_to_dense(self):
|
|
i = self.IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
v = self.ValueTensor([2, 1, 3, 4])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
res = self.ValueTensor([
|
|
[[2, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[0, 3, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 4]],
|
|
])
|
|
|
|
x.to_dense() # Tests double to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
self.assertEqual(res, x.to_dense())
|
|
self.assertEqual(res, self.safeToDense(x))
|
|
|
|
def test_shared(self):
|
|
i = self.IndexTensor([[2]])
|
|
v = self.ValueTensor([5])
|
|
x = self.SparseTensor(i, v, torch.Size([3]))
|
|
v[0] = 6
|
|
self.assertEqual(self.ValueTensor([0, 0, 6]), self.safeToDense(x))
|
|
i[0][0] = 0
|
|
self.assertEqual(self.ValueTensor([6, 0, 0]), self.safeToDense(x))
|
|
|
|
def test_to_dense_hybrid(self):
|
|
i = self.IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
])
|
|
v = self.ValueTensor([[2, 3], [1, 2], [3, 4], [4, 5]])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 2]))
|
|
res = self.ValueTensor([
|
|
[[2, 3],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[1, 2],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[3, 4],
|
|
[0, 0],
|
|
[0, 0],
|
|
[4, 5]],
|
|
])
|
|
|
|
x.to_dense() # Tests double to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
self.assertEqual(res, x.to_dense())
|
|
self.assertEqual(res, self.safeToDense(x))
|
|
|
|
def test_contig(self):
|
|
i = self.IndexTensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = self.ValueTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
|
x = self.SparseTensor(i, v, torch.Size([100, 100]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = self.ValueTensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
i = self.IndexTensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.ValueTensor([3, 2, 4, 1])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.ValueTensor([2, 1, 3, 4])
|
|
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
# Duplicate indices
|
|
i = self.IndexTensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.ValueTensor([3, 2, 4, 1])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.ValueTensor([6, 4])
|
|
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
def test_contig_hybrid(self):
|
|
i = self.IndexTensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = self.ValueTensor([
|
|
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
|
|
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
|
|
])
|
|
x = self.SparseTensor(i, v, torch.Size([100, 100, 2]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = self.ValueTensor([
|
|
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
|
|
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
|
|
])
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
i = self.IndexTensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.ValueTensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.ValueTensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
|
|
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
# Duplicate indices
|
|
i = self.IndexTensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.ValueTensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
|
|
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = self.IndexTensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.ValueTensor([[6, 4, 5], [4, 3, 4]])
|
|
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
def test_clone(self):
|
|
x, _, _ = self._gen_sparse(4, 20, 5)
|
|
if self.is_uncoalesced:
|
|
self.assertFalse(x.is_coalesced())
|
|
y = x.clone()
|
|
self.assertFalse(y.is_coalesced())
|
|
x = x.coalesce()
|
|
self.assertTrue(x.is_coalesced())
|
|
y = x.clone()
|
|
self.assertTrue(y.is_coalesced())
|
|
|
|
@cuda_only
|
|
def test_cuda_empty(self):
|
|
x = torch.sparse.FloatTensor(2, 3, 4)
|
|
y = x.cuda(0)
|
|
self.assertEqual(x._sparseDims(), y._sparseDims())
|
|
self.assertEqual(x._denseDims(), y._denseDims())
|
|
x = y.cpu()
|
|
self.assertEqual(y._sparseDims(), x._sparseDims())
|
|
self.assertEqual(y._denseDims(), x._denseDims())
|
|
|
|
def test_transpose(self):
|
|
x = self._gen_sparse(4, 20, 5)[0]
|
|
y = self.safeToDense(x)
|
|
|
|
for i, j in itertools.combinations(range(4), 2):
|
|
x = x.transpose_(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(self.safeToDense(x), y)
|
|
|
|
x = x.transpose(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(self.safeToDense(x), y)
|
|
|
|
def test_transpose_coalesce_invariant(self):
|
|
# If a sparse tensor is coalesced, its transpose should be the same
|
|
# If a sparse tensor is uncoalesed, its transpose should be the same
|
|
x_coalesced = self._gen_sparse(2, 3, 4)[0].coalesce()
|
|
x_indices = x_coalesced._indices()
|
|
x_values = x_coalesced._values()
|
|
|
|
y_uncoalesced = self.SparseTensor(
|
|
torch.cat([x_indices, x_indices], dim=1),
|
|
torch.cat([x_values, x_values]),
|
|
x_coalesced.size())
|
|
|
|
self.assertTrue(x_coalesced.is_coalesced())
|
|
self.assertFalse(y_uncoalesced.is_coalesced())
|
|
|
|
self.assertTrue(x_coalesced.transpose(0, 1).is_coalesced())
|
|
self.assertFalse(y_uncoalesced.transpose(0, 1).is_coalesced())
|
|
|
|
x_coalesced.transpose_(0, 1)
|
|
y_uncoalesced.transpose_(0, 1)
|
|
self.assertTrue(x_coalesced.is_coalesced())
|
|
self.assertFalse(y_uncoalesced.is_coalesced())
|
|
|
|
def test_t_empty(self):
|
|
x = self.SparseTensor(2, 3)
|
|
x.t_()
|
|
self.assertEqual(torch.Size([3, 2]), x.size())
|
|
self.assertEqual(0, x._indices().numel())
|
|
self.assertEqual(0, x._values().numel())
|
|
self.assertEqual(x._sparseDims(), 2)
|
|
self.assertEqual(x._denseDims(), 0)
|
|
|
|
x = self.SparseTensor(2, 3)
|
|
y = x.t()
|
|
self.assertEqual(torch.Size([3, 2]), y.size())
|
|
self.assertEqual(0, y._indices().numel())
|
|
self.assertEqual(0, y._values().numel())
|
|
self.assertEqual(x._sparseDims(), 2)
|
|
self.assertEqual(x._denseDims(), 0)
|
|
|
|
def test_add_zeros(self):
|
|
def test_shape(sparse_dims, sizes):
|
|
x, _, _ = self._gen_sparse(sparse_dims, 20, sizes)
|
|
zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device)
|
|
r1 = zeros + x
|
|
r2 = x + zeros
|
|
self.assertEqual(r1, x)
|
|
self.assertEqual(r2, x)
|
|
|
|
test_shape(1, [1])
|
|
test_shape(4, [3, 17, 19, 5])
|
|
test_shape(2, [3, 17, 19, 5])
|
|
|
|
@cpu_only
|
|
def test_mm(self):
|
|
def test_shape(di, dj, dk):
|
|
x, _, _ = self._gen_sparse(2, 20, [di, dj])
|
|
t = torch.randn(di, dk)
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
res = torch.addmm(alpha, t, beta, x, y)
|
|
expected = torch.addmm(alpha, t, beta, self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.addmm(t, x, y)
|
|
expected = torch.addmm(t, self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.mm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(10, 100, 100)
|
|
test_shape(100, 1000, 200)
|
|
test_shape(64, 10000, 300)
|
|
|
|
@cpu_only
|
|
def test_saddmm(self):
|
|
def test_shape(di, dj, dk):
|
|
x = self._gen_sparse(2, 20, [di, dj])[0]
|
|
t = self._gen_sparse(2, 20, [di, dk])[0]
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
res = torch.saddmm(alpha, t, beta, x, y)
|
|
expected = torch.addmm(alpha, self.safeToDense(t), beta, self.safeToDense(x), y)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
res = torch.saddmm(t, x, y)
|
|
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
res = torch.smm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
test_shape(7, 5, 3)
|
|
test_shape(1000, 100, 100)
|
|
test_shape(3000, 64, 300)
|
|
|
|
def test_dsmm(self):
|
|
def test_shape(di, dj, dk):
|
|
x = self._gen_sparse(2, 20, [di, dj])[0]
|
|
y = self.randn(dj, dk)
|
|
|
|
res = torch.dsmm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(7, 5, 3)
|
|
test_shape(1000, 100, 100)
|
|
test_shape(3000, 64, 300)
|
|
|
|
def test_hsmm(self):
|
|
def test_shape(di, dj, dk):
|
|
x = self._gen_sparse(2, 20, [di, dj])[0]
|
|
y = self.randn(dj, dk)
|
|
|
|
res = torch.hsmm(x, y)
|
|
# TODO: use self.safeToDense(), but this triggers
|
|
# https://github.com/pytorch/pytorch/issues/3170
|
|
expected = torch.mm(x.to_dense(), y)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
test_shape(7, 5, 3)
|
|
test_shape(1000, 100, 100)
|
|
test_shape(3000, 64, 300)
|
|
|
|
def _test_spadd_shape(self, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x, _, _ = self._gen_sparse(len(shape_i), 10, shape)
|
|
y = self.randn(*shape)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, r, x)
|
|
expected = y + r * self.safeToDense(x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous dense tensor
|
|
s = list(shape)
|
|
s[0] = shape[-1]
|
|
s[-1] = shape[0]
|
|
y = self.randn(*s)
|
|
y.transpose_(0, len(s) - 1)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, r, x)
|
|
expected = y + r * self.safeToDense(x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_spadd(self):
|
|
self._test_spadd_shape([5, 6])
|
|
self._test_spadd_shape([10, 10, 10])
|
|
self._test_spadd_shape([50, 30, 20])
|
|
self._test_spadd_shape([5, 5, 5, 5, 5, 5])
|
|
|
|
def test_spadd_hybrid(self):
|
|
self._test_spadd_shape([5, 6], [2, 3])
|
|
self._test_spadd_shape([10, 10, 10], [3])
|
|
self._test_spadd_shape([50, 30, 20], [2])
|
|
self._test_spadd_shape([5, 5, 5, 5, 5, 5], [2])
|
|
|
|
def test_norm(self):
|
|
x, _, _ = self._gen_sparse(3, 10, 100)
|
|
y = x.coalesce()
|
|
self.assertEqual(x.norm(), y._values().norm())
|
|
|
|
def _test_basic_ops_shape(self, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = self.safeToDense(x1) + self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 - x2
|
|
y2 = x1.clone()
|
|
y2.sub_(x2)
|
|
expected = self.safeToDense(x1) - self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 * x2
|
|
y2 = x1.clone()
|
|
y2.mul_(x2)
|
|
expected = self.safeToDense(x1) * self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 * 37.5
|
|
y2 = x1.clone()
|
|
y2.mul_(37.5)
|
|
expected = self.safeToDense(x1) * 37.5
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 / 37.5
|
|
y2 = x1.clone()
|
|
y2.div_(37.5)
|
|
expected = self.safeToDense(x1) / 37.5
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
# TODO: add back inplace support
|
|
y1 = x1 ** 2
|
|
y2 = x1.clone()
|
|
y2 = y2.pow(2)
|
|
expected = self.safeToDense(x1) ** 2
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y = x1.clone()
|
|
y.zero_()
|
|
expected = torch.zeros(x1.size())
|
|
self.assertEqual(self.safeToDense(y), expected)
|
|
|
|
self.assertFalse(x1.is_coalesced())
|
|
y = x1.coalesce()
|
|
z = x1.coalesce()
|
|
self.assertFalse(x1.is_coalesced())
|
|
self.assertTrue(y.is_coalesced())
|
|
self.assertEqual(x1, y)
|
|
# check that coalesce is out of place
|
|
y._values().add_(1)
|
|
self.assertEqual(z._values() + 1, y._values())
|
|
|
|
def test_basic_ops(self):
|
|
self._test_basic_ops_shape([5, 6])
|
|
self._test_basic_ops_shape([10, 10, 10])
|
|
self._test_basic_ops_shape([50, 30, 20])
|
|
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5])
|
|
|
|
def test_basic_ops_hybrid(self):
|
|
self._test_basic_ops_shape([5, 6], [2, 3])
|
|
self._test_basic_ops_shape([10, 10, 10], [3])
|
|
self._test_basic_ops_shape([50, 30, 20], [2])
|
|
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5], [2])
|
|
|
|
def _test_sparse_mask_shape(self, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = self.safeToDense(x1) + self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
def _test_sparse_mask_fixed(self):
|
|
i = self.IndexTensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.ValueTensor([1, 2, 3, 4])
|
|
x = self.SparseTensor(i, v, torch.Size([5, 4])).coalesce()
|
|
dense = self.ValueTensor([
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
[9, 10, 11, 12],
|
|
[13, 14, 15, 16],
|
|
[17, 18, 19, 20],
|
|
])
|
|
exp_v = self.ValueTensor([7, 14, 3, 20])
|
|
res = dense._sparse_mask(x)
|
|
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4]))
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_sparse_mask(self):
|
|
self._test_sparse_mask_fixed()
|
|
|
|
self._test_sparse_mask_shape([5, 6])
|
|
self._test_sparse_mask_shape([10, 10, 10])
|
|
self._test_sparse_mask_shape([50, 30, 20])
|
|
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5])
|
|
|
|
def _test_zeros(self, shape, out_shape_i, out_shape_v=None):
|
|
out_shape = out_shape_i + (out_shape_v or [])
|
|
for nnz in [9, 12]:
|
|
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape)
|
|
torch.zeros(*shape, out=out)
|
|
self.assertEqual(tuple(out.size()), tuple(shape))
|
|
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
|
|
self.assertEqual(out._nnz(), 0)
|
|
self.assertEqual(out._sparseDims(), len(shape))
|
|
self.assertEqual(out._denseDims(), 0)
|
|
|
|
def test_zeros(self):
|
|
i_shapes = [2, 3, 4]
|
|
v_shapes = [3, 4, 5, 6]
|
|
for i_dim in range(1, len(i_shapes) + 1):
|
|
for v_dim in range(len(v_shapes) + 1):
|
|
self._test_zeros([2, 3, 4], i_shapes[:i_dim], v_shapes[:v_dim])
|
|
|
|
def _test_zeros_like(self, template_shape_i, template_shape_v=None):
|
|
template_shape_v = template_shape_v or []
|
|
template_shape = template_shape_i + template_shape_v
|
|
for nnz in [9, 12]:
|
|
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape)
|
|
res = torch.zeros_like(t)
|
|
self.assertEqual(tuple(res.size()), tuple(template_shape))
|
|
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
|
|
self.assertEqual(res._nnz(), 0)
|
|
self.assertEqual(res._sparseDims(), len(template_shape_i))
|
|
self.assertEqual(res._denseDims(), len(template_shape_v))
|
|
|
|
def test_zeros_like(self):
|
|
i_shapes = [2, 3, 4]
|
|
v_shapes = [3, 4, 5, 6]
|
|
for i_dim in range(1, len(i_shapes) + 1):
|
|
for v_dim in range(len(v_shapes) + 1):
|
|
self._test_zeros_like(i_shapes[:i_dim], v_shapes[:v_dim])
|
|
|
|
def _test_sparse_mask_hybrid_fixed(self):
|
|
i = self.IndexTensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.ValueTensor([[1, 2], [2, 3], [3, 4], [4, 5]])
|
|
# TODO: This is also testing that, if coalesce is a no-op,
|
|
# the indices don't get permuted. I don't know if we actually
|
|
# want to give this invariant.
|
|
x = self.SparseTensor(i, v, torch.Size([5, 4, 2])).coalesce()
|
|
dense = self.ValueTensor([
|
|
[[1, 3], [2, 2], [3, 3], [4, 2]],
|
|
[[5, 7], [6, 7], [7, 9], [8, 9]],
|
|
[[9, 2], [10, 4], [11, 1], [12, 3]],
|
|
[[13, 5], [14, 1], [15, 1], [16, 6]],
|
|
[[17, 7], [18, 2], [19, 7], [20, 1]],
|
|
])
|
|
res = dense._sparse_mask(x)
|
|
exp_v = self.ValueTensor([[7, 9], [14, 1], [3, 3], [20, 1]])
|
|
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4, 2]))
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_sparse_variable_methods(self):
|
|
# TODO: delete when tensor/variable are merged
|
|
from torch.autograd import Variable
|
|
i = self.IndexTensor([[0, 1, 1], [2, 0, 2]])
|
|
v = self.ValueTensor([3, 4, 5])
|
|
sparse_mat = self.SparseTensor(i, v, torch.Size([2, 3]))
|
|
sparse_var = Variable(sparse_mat)
|
|
|
|
to_test_one_arg = {
|
|
'zeros_like': lambda x: torch.zeros_like(x),
|
|
'transpose': lambda x: x.transpose(0, 1),
|
|
'transpose_': lambda x: x.transpose_(0, 1),
|
|
't': lambda x: x.t(),
|
|
't_': lambda x: x.t_(),
|
|
'div': lambda x: x.div(2),
|
|
'div_': lambda x: x.div_(2),
|
|
'pow': lambda x: x.pow(2),
|
|
'_nnz': lambda x: x._nnz(),
|
|
'is_coalesced': lambda x: x.is_coalesced(),
|
|
'coalesce': lambda x: x.coalesce(),
|
|
'to_dense': lambda x: x.to_dense(),
|
|
'_sparseDims': lambda x: x._sparseDims(),
|
|
'_denseDims': lambda x: x._denseDims(),
|
|
'norm': lambda x: x.norm(),
|
|
}
|
|
|
|
for test_name, test_fn in to_test_one_arg.items():
|
|
var1 = sparse_var.clone()
|
|
tensor1 = sparse_mat.clone()
|
|
|
|
out_var = test_fn(var1)
|
|
out_tensor = test_fn(tensor1)
|
|
|
|
if isinstance(out_tensor, int) or isinstance(out_tensor, bool):
|
|
if not isinstance(out_var, int) and not isinstance(out_var, bool):
|
|
check_var = out_var.data[0]
|
|
else:
|
|
check_var = out_var
|
|
self.assertEqual(out_var, out_tensor)
|
|
continue
|
|
|
|
# Assume output is variable / tensor
|
|
self.assertEqual(test_fn(var1).data, test_fn(tensor1),
|
|
test_name)
|
|
|
|
i = self.IndexTensor([[0, 0, 1], [1, 2, 1]])
|
|
v = self.ValueTensor([3, 3, 4])
|
|
sparse_mat2 = self.SparseTensor(i, v, torch.Size([2, 3]))
|
|
sparse_var2 = Variable(sparse_mat2)
|
|
|
|
to_test_two_arg = {
|
|
'sub': lambda x, y: x.sub(y),
|
|
'sub_': lambda x, y: x.sub_(y),
|
|
'mul': lambda x, y: x.mul(y),
|
|
'mul_': lambda x, y: x.mul_(y),
|
|
}
|
|
|
|
for test_name, test_fn in to_test_two_arg.items():
|
|
var1 = sparse_var.clone()
|
|
var2 = sparse_var2.clone()
|
|
tensor1 = sparse_mat.clone()
|
|
tensor2 = sparse_mat2.clone()
|
|
self.assertEqual(test_fn(var1, var2).data,
|
|
test_fn(tensor1, tensor2), test_name)
|
|
|
|
to_test_mixed = [
|
|
# test name, lambda expression, should_run_when_cuda
|
|
('sspaddmm', lambda sp, de: sp.sspaddmm(sp, de), False),
|
|
('sspaddmm_b', lambda sp, de: sp.sspaddmm(2, sp, de), False),
|
|
('sspaddmm_b_a', lambda sp, de: sp.sspaddmm(3, 2, sp, de), False),
|
|
('addmm', lambda sp, de: de.addmm(sp, de), True),
|
|
# TODO: This looks like a typo
|
|
('addmm_', lambda sp, de: de.addmm(sp, de), True),
|
|
('mm', lambda sp, de: torch.mm(sp, de), True),
|
|
('mm_out', lambda sp, de: torch.mm(sp, de, out=de), True),
|
|
]
|
|
|
|
i = self.IndexTensor([[0, 0, 1, 2, 2], [1, 2, 1, 0, 1]])
|
|
v = self.ValueTensor([3, 3, 4, 1, 2])
|
|
sparse_mat = self.SparseTensor(i, v, torch.Size([3, 3]))
|
|
sparse_var = Variable(sparse_mat)
|
|
dense_mat = sparse_mat.to_dense().random_(0, 5)
|
|
dense_var = Variable(dense_mat)
|
|
|
|
for test_name, test_fn, test_cuda in to_test_mixed:
|
|
if sparse_var.is_cuda and not test_cuda:
|
|
continue
|
|
sp_var = sparse_var.clone()
|
|
de_var = dense_var.clone()
|
|
sp_mat = sparse_mat.clone()
|
|
de_mat = dense_mat.clone()
|
|
self.assertEqual(test_fn(sp_var, de_var).data,
|
|
test_fn(sp_mat, de_mat), test_name)
|
|
|
|
def test_sparse_mask_hybrid(self):
|
|
self._test_sparse_mask_hybrid_fixed()
|
|
|
|
self._test_sparse_mask_shape([5, 6], [2, 3])
|
|
self._test_sparse_mask_shape([10, 10, 10], [3])
|
|
self._test_sparse_mask_shape([50, 30, 20], [2])
|
|
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5], [2])
|
|
|
|
def test_sparse_add_coalesce(self):
|
|
i = self.IndexTensor([[1, 2, 1]])
|
|
v = self.ValueTensor([3, 4, 5])
|
|
x = self.SparseTensor(i, v, torch.Size([3]))
|
|
y = self.SparseTensor(i, v, torch.Size([3]))
|
|
z = x + y
|
|
|
|
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
|
|
|
|
@cuda_only
|
|
def test_storage_not_null(self):
|
|
x = torch.cuda.sparse.FloatTensor(2)
|
|
self.assertNotEqual(x.get_device(), -1)
|
|
|
|
@cuda_only
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
|
|
def test_same_gpu(self):
|
|
i = self.IndexTensor([[2]]).cuda(1)
|
|
v = self.ValueTensor([5]).cuda(1)
|
|
x = self.SparseTensor(i, v, torch.Size([3]), device=1)
|
|
self.assertEqual(x.get_device(), 1)
|
|
self.assertEqual(x._values().get_device(), 1)
|
|
self.assertEqual(x._indices().get_device(), 1)
|
|
|
|
x = self.SparseTensor(3, device=1)
|
|
self.assertEqual(x.get_device(), 1)
|
|
self.assertEqual(x._values().get_device(), 1)
|
|
self.assertEqual(x._indices().get_device(), 1)
|
|
|
|
v = self.ValueTensor([5]).cuda(0)
|
|
self.assertRaises(RuntimeError, lambda: self.SparseTensor(i, v, torch.Size([3])))
|
|
|
|
def _test_new_device(self, size, device):
|
|
with torch.cuda.device(device):
|
|
x = torch.cuda.sparse.DoubleTensor(*size)
|
|
self.assertEqual(x.get_device(), device)
|
|
x1 = x.new()
|
|
x2 = x.new(2, 3)
|
|
self.assertEqual(x1.get_device(), device)
|
|
self.assertEqual(x2.get_device(), device)
|
|
|
|
@cuda_only
|
|
def test_new_device_single_gpu(self):
|
|
self._test_new_device((), 0)
|
|
self._test_new_device((30, 20), 0)
|
|
self._test_new_device((30, 20, 10), 0)
|
|
|
|
@cuda_only
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
|
|
def test_new_device_multi_gpu(self):
|
|
self._test_new_device((), 1)
|
|
self._test_new_device((30, 20), 1)
|
|
self._test_new_device((30, 20, 10), 1)
|
|
|
|
def test_new(self):
|
|
x, indices, values = self._gen_sparse(3, 10, 100)
|
|
if not x.is_cuda:
|
|
# CUDA sparse tensors currently requires the size to be
|
|
# specified if nDimV > 0
|
|
self.assertEqual(x.new(indices, values), x)
|
|
self.assertEqual(x.new(indices, values, x.size()), x)
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_factory(self):
|
|
default_size = torch.Size([1, 3])
|
|
size = torch.Size([3, 3])
|
|
for include_size in [True, False]:
|
|
for use_tensor_idx in [True, False]:
|
|
for use_tensor_val in [True, False]:
|
|
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
|
|
# have to include size with cuda sparse tensors
|
|
include_size = include_size or use_cuda
|
|
dtype = torch.float64
|
|
long_dtype = torch.int64
|
|
device = torch.device('cpu') if not use_cuda else torch.device(torch.cuda.device_count() - 1)
|
|
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
|
|
values = torch.tensor([1.], dtype=dtype) if use_tensor_val else 1.
|
|
if include_size:
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
|
|
device=device, requires_grad=True)
|
|
else:
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
|
|
device=device, requires_grad=True)
|
|
self.assertEqual(indices, sparse_tensor._indices())
|
|
self.assertEqual(values, sparse_tensor._values())
|
|
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
|
|
self.assertEqual(dtype, sparse_tensor.dtype)
|
|
if use_cuda:
|
|
self.assertEqual(device, sparse_tensor._values().device)
|
|
self.assertEqual(True, sparse_tensor.requires_grad)
|
|
|
|
def test_factory_size_check(self):
|
|
indices = self.IndexTensor([[1, 2], [0, 2]])
|
|
values = self.ValueTensor([.5, .5])
|
|
sizes = torch.Size([2, 3])
|
|
with self.assertRaisesRegex(RuntimeError, "sizes is inconsistent with indices"):
|
|
self.SparseTensor(indices, values, sizes)
|
|
|
|
indices = self.IndexTensor([[1, 2], [0, 2]])
|
|
values = self.ValueTensor([[1, 1, 1], [1, 1, 1]])
|
|
sizes = torch.Size([3, 3, 2])
|
|
with self.assertRaisesRegex(RuntimeError, "values and sizes are inconsistent"):
|
|
self.SparseTensor(indices, values, sizes)
|
|
|
|
def test_factory_empty_indices(self):
|
|
device = 'cuda' if self.is_cuda else 'cpu'
|
|
tensor = torch.sparse_coo_tensor([], [], torch.Size([]), device=device)
|
|
expected_indices = torch.tensor([], dtype=torch.long, device=device)
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
|
|
@cpu_only
|
|
def test_factory_type_inference(self):
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float32))
|
|
self.assertEqual(torch.float32, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float64))
|
|
self.assertEqual(torch.float64, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
|
|
self.assertEqual(torch.int64, t.dtype)
|
|
|
|
@cuda_only
|
|
def test_factory_device_type_inference(self):
|
|
# both indices/values are CUDA
|
|
shape = (1, 3)
|
|
for indices_device in ['cuda', 'cpu']:
|
|
for values_device in ['cuda', 'cpu']:
|
|
for sparse_device in ['cuda', 'cpu', None]:
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
|
|
torch.tensor([1.], device=values_device),
|
|
(1, 3), device=sparse_device)
|
|
should_be_cuda = sparse_device == 'cuda' or (sparse_device is None and values_device == 'cuda')
|
|
self.assertEqual(should_be_cuda, t.is_cuda)
|
|
|
|
@cpu_only
|
|
def test_factory_copy(self):
|
|
# both correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.tensor([1.], dtype=torch.float64)
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
|
|
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
|
|
# only indices correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.tensor([1.], dtype=torch.float32)
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
|
|
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
|
|
# only values correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.tensor([1.], dtype=torch.float64)
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
|
|
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
|
|
# neither correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.tensor([1.], dtype=torch.float32)
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
|
|
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_dtypes(self):
|
|
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
|
|
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_empty_full(self):
|
|
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
|
|
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
|
if torch.cuda.device_count() > 0:
|
|
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None)
|
|
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
|
|
|
|
def test_is_sparse(self):
|
|
x = torch.randn(3, 3)
|
|
self.assertFalse(x.is_sparse)
|
|
|
|
x = self.SparseTensor()
|
|
self.assertTrue(x.is_sparse)
|
|
|
|
def test_resize_as(self):
|
|
def do_test(t):
|
|
y = t.new().resize_as_(t).zero_()
|
|
self.assertEqual(y.shape, t.shape)
|
|
# Check that y can be added to t. Currently, this requires that
|
|
# _sparseDims and _denseDims match.
|
|
self.assertEqual(t, t + y)
|
|
|
|
do_test(self.SparseTensor())
|
|
|
|
def test_is_nonzero(self):
|
|
self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,)).is_nonzero())
|
|
# NB: We should test "scalar" sparse tensors, but they don't actually
|
|
# work at the moment (in principle, they should)
|
|
|
|
|
|
class TestUncoalescedSparse(TestSparse):
|
|
def setUp(self):
|
|
super(TestUncoalescedSparse, self).setUp()
|
|
self.is_uncoalesced = True
|
|
|
|
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
class TestCudaSparse(TestSparse):
|
|
def setUp(self):
|
|
super(TestCudaSparse, self).setUp()
|
|
self.is_cuda = True
|
|
self.IndexTensor = torch.cuda.LongTensor
|
|
self.ValueTensor = torch.cuda.DoubleTensor
|
|
self.SparseTensor = torch.cuda.sparse.DoubleTensor
|
|
|
|
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
class TestCudaUncoalescedSparse(TestCudaSparse):
|
|
def setUp(self):
|
|
super(TestCudaUncoalescedSparse, self).setUp()
|
|
self.is_uncoalesced = True
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|